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Wastewater treatment plants (WWTPs) can be important point sources for the discharge of engineered
nanomaterials to natural surface waters. In this study, we investigated the fate of nano-TiO2 in two full scale
WWTPs and their receiving streams in northern China (i.e., the Binhe andMinxin rivers,whichflow to the Xiaohe
River). High resolution transmission electron microscopy, energy dispersion X-ray spectroscopy and X-ray pho-
toelectron spectroscopy analyses indicated that Ti in colloids present in the WWTP effluents and receiving
streams originated mainly from engineered nano-TiO2. Most of the nano-TiO2 (74–85%) in the influent sewage
was removed by the activated sludge, but significant concentrations (27–43 μg/L Ti) remained associated with
colloids in the effluents. Surprisingly, the total concentration of Ti in the receiving river streams was higher
(52–86 μg/L), indicating the importance of other sources such as urban runoff. These relatively high Ti concentra-
tions are unlikely to originate from natural sources since they are significantly higher than those in the nearby
Yuqiao Reservoir (b5 μg/L), representing regional background levels. Consistently, Ti levels in fish collected
from the Xiaohe River (including muscle and other tissues) were significantly higher than those of fish from
the reservoir. Overall, TiO2 releases throughWWTP effluents and other sources (including runoff) are contribut-
ing to the relatively high observed concentrations of suspended Ti in the Xiaohe River, which results in accumu-
lation in edible fish tissue.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

With the fast development of nanotechnology in the recent decades,
engineered nanomaterials (ENMs) have beenwidely used in a variety of
commercial products and industrial processes (Gao et al., 2013;
Musarrat et al., 2010; Piccinno et al., 2012; Wei et al., 2015). Nano-
sized titanium dioxide (nano-TiO2) is one of the most widely used
ENMs due to its unique ultraviolet light absorption, thermal stability,
optical properties, and photocatalytic activity (Al-Kattan et al., 2014;
Piccinno et al., 2012; von Goetz et al., 2013; Weir et al., 2012; Windler
et al., 2012). Nano-TiO2 can be found in paints, food additives, cosmetics
and skin-care products, coating and cleaning agents, plastics, cement,
medicines, and electronics. Human consumption of nano-TiO2 as an in-
gredient in food products has been estimated at 1mg kg−1 bodyweight
per day (Weir et al., 2012). Nano-TiO2 is one of the most commonly
used nanomaterials, with a global production of about 10 million tons
(Landsiedel et al., 2010; Piccinno et al., 2012). In China, the production
of nano-TiO2 was estimated to be 1800 tons in 2014 (Gao et al., 2013).

With itswidespread use in household and industrial products, nano-
TiO2 is commonly present in domestic sewage, industrial effluents and
surface runoff from the paints on building facades (Brar et al., 2010;
Kaegi et al., 2008; Kiser et al., 2009;Weir et al., 2012).Wastewater treat-
ment plants (WWTPs) have been shown to be an important point
source for ENMs entering aquatic systems (Gottschalk et al., 2009;
Nowack and Bucheli, 2007; O'Brien and Cummins 2010; Stone et al.,
2010). A few studies reported that WWTPs remove the majority of
nano-TiO2 present in the influent sewage, whereas a small fraction
would end up in the effluent and discharged to natural water systems
(Brar et al., 2010; Kang et al., 2009; Kiser et al., 2009; Nyberg et al.,
2008; Zhou et al., 2015). Several modeling efforts have been conducted
to predict the environmental concentrations of nano-TiO2 in inland sur-
face waters in support of environmental risk assessments (Barton et al.,
2015; Gottschalk et al., 2009, 2011, 2013, 2015; Johnson et al., 2011;
Mueller and Nowack, 2008; Musee, 2010; O'Brien and Cummins 2010;
Praetorius et al., 2012; Sun et al., 2014). However, the reliability of
these simulations has not been validated with data collected from
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receivingwater bodies (Gondikas et al., 2014; Neal et al., 2011). Analyt-
ical limitations associated with the measurement and characterization
of nano-TiO2 and other ENMs in such complex aquatic systems (owing
to nanoparticle transformations and the interferences of many other in-
organic, organic and biological materials) represent a major challenge
for such risk assessment efforts.

If released to natural water systems at sufficiently high concentra-
tions (e.g., 1–200mg/L), nano-TiO2 could cause adverse effects to aquat-
ic organisms such as stunted growth, delayed metamorphosis,
malformations, organ pathology, and DNA damage (Hao et al., 2009;
Clemente et al., 2014). Many studies have demonstrated that nano-
TiO2 can impact Daphnia magna, algae, fish, and nematodes (Aruoja et
al., 2009; Jacobasch et al., 2014;Wang et al., 2009; Zhu et al., 2008). Sev-
eral recent studies showed that continued exposure to nano-TiO2 for up
to 13 weeks could cause somemortality, reproduction impairment, and
tissue damage in both Daphnia and zebrafish even at 0.1 mg/L (Federici
et al., 2007; Zhu et al., 2010; Wang et al., 2011).

Unlike hydrophobic organic pollutants and heavy metals that are
known to accumulate in organisms, bioaccumulation of nano-TiO2 in
aquatic organisms remains controversial. Some studies report that die-
tary and waterborne exposure to nano-TiO2 does not lead to TiO2 accu-
mulation in fishmuscle although it accumulated in the gill, gut and skin
of the fish (Boyle et al., 2013; Qiang et al., 2015; Zhu et al., 2010). In con-
trast, zebrafish has been observed to take upnano-TiO2 fromwater even
at low ng/mL level, and accumulate it in the liver, muscle and other tis-
sues (Bar-Ilan et al., 2013). All these studieswere conducted in labswith
organisms exposed to artificially prepared and well dispersed nano-
TiO2 suspension. To our knowledge, there are no published field studies
on the occurrence and accumulation of “weathered” nano-TiO2 in wild
aquatic organisms.

This study characterizes the occurrence and fate of nano-TiO2 in
WWTP influents, effluents, biosolids and receiving waters, and assesses
the accumulation of nano-TiO2 in associated fish. To characterize the
nano-TiO2 in the complex samples, a novel analytical approach involv-
ing consecutive dialysis against inorganic acids and digestion with 30%
of H2O2 tominimize analytical interferenceswas developed. The treated
samples were then characterized with high resolution transmission
electron microscopy (HRTEM) equipped with an energy dispersion X-
ray spectroscopy (EDS), and X-ray photoelectron spectroscopy. There-
fore, this study provides unprecedented field data on howWWTP influ-
ence nano-TiO2 concentrations in various environmental
compartments (i.e., water, and aquatic organisms) to enhance risk
assessment.

2. Materials and methods

2.1. Materials and reagents

Anatase type TiO2 in different sizes (5–10, 60 and 100 nm in diame-
ter, purity N 99.8%) were purchased from Aladdin Biochemical Technol-
ogy Co., Ltd, Shanghai, China. Nitric acid (GR, 65%), hydrochloric acid
(GR, 37%), sulfuric acid (GR, 98%), hydrofluoric acid (GR, 40%), hydrogen
peroxide (GR, 30%) and sodium dodecyl benzene sulfonate were pur-
chased fromChemical Reagent Supply Company, Tianjin, China. Ethanol
(GR, 95%) and methanol (GR, 99.99%) were purchased from Concord
Technology Co., Ltd, Tianjin, China.

2.2. Wastewater treatment plants and receiving streams site description

This research was conducted at two full scale WWTPs and their re-
ceiving streams in Shijiazhuang, Hebei Province, China. The effluents
of the WWTPs were directly discharged in Binhe River and Minxin
River, and finally flowed to Xiaohe River. Fig. 1 illustrates the sampling
sites of theWWTPs, Binhe River, Minxin River and Xiaohe River. To un-
derstand the impacts of WWTPs on the receiving water system, a re-
mote control sampling site was selected at Yuqiao Reservoir (Fig. 1),
which is the drinking water source for the residents of Tianjin, China,
and is around 360 km from the WWTPs. The Yuqiao Reservoir is highly
protected following strict rules and actions.

Schematics of the WWTPs including sampling locations are shown
in Fig. 2A. Anaerobic-Anoxic-Oxic (AAO) biological treatment process
and tertiary treatment (WWTP1 used tertiary filtration, WWTP2 used
denitrification) are used in the full-scale municipal WWTPs. The source
water compositions of the twoWWTPswere different. About 90% of the
WWTP1 influent was domestic sewage, while the WWTP2 influent
consisted of about 30% of domestic sewage and 70% industrialwastewa-
ter. The daily processing capacity of WWTP1 was 250,000 tons sewage,
and the effluent was discharged into Binhe River. While the daily pro-
cessing capacity of WWTP2 was 600,000 tons sewage, and the effluent
was discharged into Minxin River.

2.3. Water and fish sampling

Water sample collection: influents and effluents in each treatment
unit of two typical WWTPs were collected in April 2015. Sampling loca-
tions are shown in Fig. 2A. At each sampling site, 600mL of influent and
effluent were collected in pre-cleaned plastic bottles. The samples col-
lected from the anaerobic basin and aerobic basin were a mixture of
water and activated sludge. They were allowed to settle for 2 h and fi-
nally the supernatant liquid was taken as effluent, while the solid pre-
cipitate was considered as biological solid sample of the basin. To
further explore the fate of nano-TiO2 in natural water environment,
water samples were also taken from Binhe, Xiaohe, Minxin Rivers and
Yuqiao Reservoir. Three parallel samples were collected at each sam-
pling site. The samples were stored on ice (b4 °C) until shipping to
the laboratory, then stored in a refrigerator at a temperature of−24 °C.

Biological sample collection: Crucian carp is very common in fresh
water in China, thus crucian carpwas selected as a representative aquat-
ic organism in the current study. Three Crucian carp were taken from
Xiaohe River and three were collected from Yuqiao Reservoir by fishing
in April 2015. All biological samples were brought back to laboratories
within an hour (to guarantee the fish were alive) and immediately dis-
sected. The dissected tissues, such as gill, brain, heart, hepatopancreas,
spleen, kidney,muscle, gut and skin of thefishwere stored in a hermetic
plastic bag and frozen until sample analysis.

2.4. Analysis of Ti

All samples were digested with acid solution and the amount of Ti
was determined. 25 mL of water sample was digested by adding 6 mL
of nitric acid and 2mL of hydrochloric acid. Biosolid and biological sam-
ples were freeze-dried before digestion. 50 mg of dried biosolid from
the WWTPs was digested in a solution consisting of 6 mL of HNO3,
2 mL of HCl, 1 mL of HF and 1 mL of H2O2. Biological samples including
the tissues of the fish, such as gill, brain, heart, hepatopancreas, spleen,
kidney, muscle, intestines, skin (themass of each sample was b100mg)
were digested in a solution consisting of 6 mL of HNO3, 2 mL of HCl and
1 mL of H2O2. The digestion process was performed in a microwave
(MSD-8G) with a three-step program (details are provided in Table
S2). The Ti4+ in the digested samples was analyzed on an inductively
coupled plasma mass spectrometer (ICP-MS) using a scandium (Sc) in-
ternal standard (m/z = 45).

2.5. Colloid isolation

In order tomake clear the compositions of the Ti-bearing suspended
solids, they were separated from the wastewater samples and used for
subsequent comprehensive characterization. It has been demonstrated
that b5% of the TiO2-NPs can pass through 0.45 or 0.7 μmpores after fil-
tering water solubilized consumer products and personal care products
(Weir et al., 2012). A preliminary study was conducted to assess the fil-
tration efficiency usingmembranes (diameter 25mm, glass-fiber filter)



Fig. 1.Map showing the locations of (A) Yuqiao Reservoir in Tianjin and theWWTPs in Shijiazhuang; (B) sampling sites at Yuqiao reservoir in Tianjin; (C) detailed information about the
sampling sites in Binhe River, Minxin River and Xiaohe River.
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with 0.15, 0.45 and1.0 μmpore size (the related information is provided
in SI). The results indicated that N99% of TiO2 nanoparticles composed of
three different particle sizes (5–10 nm, 60 nm and 100 nm) could be ef-
fectively intercepted on the three membranes, and no significant differ-
ence was observed among the membranes. This suggested that
filtration may promote the aggregation of nano-TiO2 to larger particles.
Thus, glass fiber filter with pore size of 0.45 μm was used to separate
TiO2 particles from water samples. Forty to fifty liters of water samples
Fig. 2. Schematic of the twoWWTPs (A) including sampling locations (circles): (1) influent, (2
effluent, (6) secondary effluent, (7) treated effluent, (8) anaerobic basin biosolids, (9) anoxic
biosolids. Solid lines indicate direction of water flow. Dashed lines represent direction of flow
WWTPs. WWTP1-8 refers the sample point 8 of WWTP1; WWTP2-9 refers the sample point 9
were filtered immediately after they were delivered to laboratory.
Thereafter, the glass fiber filter was put in a glass beaker with 100 mL
of distilledwater and sonicated (80 Hz) for 30min to disperse the solids
intercepted on thefilter. Thefilter was taken out and the isolated colloid
was loaded in a 3500 Da dialysis tube and dialyzed against HCl (remove
carbonate and acid-soluble salts) and hydrofluoric acid (remove silica
and other inorganics) (Leenheer, 2009; Leenheer et al., 2007; Song et
al., 2010; Westerhoff et al., 2011). The isolated colloid was dialyzed
) primary effluent, (3) anaerobic basin effluent, (4) anoxic basin effluent, (5) aerobic basin
basin biosolids, (10) aerobic basin biosolids, (11) secondary biosolids, and (12) finished
of solids. The Ti4+ concentration in the influent, effluent (B) and biosolids (C) of the two
of WWTP2.

Image of Fig. 1
Image of Fig. 2
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against 4 L of 0.1 M HCl until all salts were visually dissolved and the
color of the permeate solutionwas negligible, and then dialyzed against
deionized water until the solution conductivity was b100 μS cm−1. It
was subsequently dialyzed for at least 24 h against 4 L of 0.2MHF to re-
move silica or silicates and then dialyzed repeatedly against deionized
water until the permeate conductivity was b10 μS cm−1. To minimize
potential interferences from organic biomass and inorganic substances,
the isolated solids fromwastewater and riverwater after dialyzingwere
transferred to a glass beaker and digestedwith 30% ofH2O2 at 90 °Cuntil
foaming ceased (Carter, 1995). During this digestion process, TiO2

remained intact and unchanged.

2.6. Characterization of Ti-bearing suspended solids

Suspended solids in WWTP effluent and receiving surface waters
were characterized and analyzed for the presence of Ti. Themorphology
of the separated solids was obtained on a JEM-2100F high resolution
transmission electron microscopy (HRTEM) equipped with an energy
dispersion X-ray spectroscopy (EDS) for elemental analysis and operat-
ed at 200 kV. The solids isolated from the WWTP effluent and river
water after dialysis and digestion were dispersed in ethanol solution
with sonication. The suspension was dropped on cupper wire, air-
dried and subjected to HRTEM/EDS analysis.

The X-ray photoelectron spectroscopy (XPS, PHI 5400 ESCA System)
using monochromatized Al Kα X-ray as the excitation source was ap-
plied to study the compositions and chemical states of Ti atoms.

2.7. Quality control and assurance

Feld and trip blanks of Milli-Q water (Millipore water purifier with
18.2 MΩ-cm conductivity) were included in the sampling process. The
level of Ti in the blankswas 0.04±0.002 μg/mL, and the sample concen-
trations were corrected by subtracting the blank concentration. Three
parallel samples were sampled at each sampling site and the results
were reported as themeanof the replicates. All experimental containers
were soaked for 12 hwith 20%HNO3 solution, andwashedwith distilled
water and Milli-Q water before use.

3. Results and discussion

3.1. Characterization of Ti-containing suspended solids in WWTP effluent
and receiving surface waters

Fig. 3 shows the HRTEM/EDS and XPS images of the isolated Ti-con-
taining colloids from the WWTP1 effluent (WWTP1-7, Fig. 2) and re-
ceiving surface water (RW-8, Fig. 1). The Ti-containing suspended
solids in the WWTP1 effluent (Fig. 3A) and Xiaohe River surface water
(Fig. 3B) were aggregates of spherical nanoparticles with diameter
about 20–50 nm. The crystalline lattices could be clearly observed at a
magnification scale of 5 nm (Fig. 3C and D). The lattice spacing of 0.32
and 0.48 nm correspond to the (110) and (002) facets of TiO2 (Wang
et al., 2012; Yaghoubi et al., 2015; Zheng et al., 2009), respectively.
The EDS of the clusters (Fig. 3E and F) indicated the presence of primar-
ily Ti, O, Cu and C, with trace amounts of other elements. Among them,
Cu and C were mainly from the HRTEM grid.

The Ti/Al ratio has been successfully used to distinguish sunscreen
nano-TiO2 from natural Ti-bearing nanoparticles Austria in water
(Gondikas et al., 2014). In natural particles, the abundance of Al is
much higher than that of Ti, and the Ti/Al ratio was approximately
20–50 for engineered nano-TiO2 particles whereas this ratio was only
0.1 for natural soils (Gondikas et al., 2014). The Ti/Al ratio of background
surface soils from Shijiazhuang (the related information is provided in
SI) was determined to be 0.09. In the current study, the Ti/Al ratio of
the Ti-containing solids from the WWTP1 effluent and the receiving
water were about 92 and 27, respectively, which were much higher
the natural Ti-bearing nano-particles from the soil in Shijiazhuang
(0.09). The results suggest that the Ti in the two samples were mainly
from engineered products.

Fig. 3G and H show the XPS results of the Ti-based solids extracted
from theWWTPs effluent and Xiaohe River water. The binding energies
(BE) of Ti 2p3/2were 458.01 and 458.23 eV,whichwere consistentwith
the typical values reported for Ti (IV) (Biesinger et al., 2010; Zaki et al.,
2013). In addition, the doublet splitting of Ti 2pwas about 5.7 eV, which
was in line with that reported in the literatures for TiO2 (Biesinger et al.,
2010; Savio et al., 2013).

About 90% of the WWTP1 influent was domestic sewage. Apparent-
ly, the major source of titanium in the domestic sewage as well as in
suspended solids in the treated effluent and the Xiaohe River was likely
TiO2 originating from food additives, consumer products, household
products, personal care products, and textiles (Weir et al., 2012;
Windler et al., 2012). This inference is supported by HRTEM, EDS and
XPS analyses and the observed Ti/Al ratios, as well as previous studies.
For example, the titanium present in the effluent of a full scale WWTP
in the USA was in the form of nano-TiOx (Westerhoff et al., 2011). An-
other study confirmed that the Ti found in surface sediments from Xia-
men Bay were solely TiOx composed of several spherical particles (Luo
et al., 2011).
3.2. Removal of titanium in wastewater treatment plants

Fig. 2B shows the Ti concentration in the influent and effluent sam-
ples from bothWWTPs. Table 1 compares themeasured environmental
concentrations (MEC) of total Ti in WWTP effluents and waste sludge
from the literature (including the results of this study). The total Ti con-
centration in the influents of the two WWTPs in this study was about
170 μg/L, which is lower than that in WWTPs surveyed in Arizona,
USA (181–1233 μg/L) (Westerhoff et al., 2011), but higher than that
measured in UK (30.5 ± 11.8 μg/L) (Johnson et al., 2011). However,
the total Ti concentration in the effluents of WWTPs in this study (26
and 43 μg/L) are higher than those reported for WWTPs in the USA
(b25 μg/L (Kiser et al., 2009; Westerhoff et al., 2011)), Canada (1.0 ±
0.6 μg/L (Khosravi et al., 2012)) and UK (3.2 μg/L (Johnson et al.,
2011)). The lower Ti concentrations reported for the UK and Canada
WWTP influents and effluents were likely due to the analytical method
used, because the influents and effluents were filtered through 0.22 or
0.45 μm membrane filters before Ti measurement.

Approximately 85% (WWTP1) and 74% (WWTP2) of Ti in the origi-
nal influentwere removed by a series of wastewater treatment process-
es, suggesting that most of the nano-TiO2 could be effectively removed
by the treatment trains. The secondary processing unit (from anaerobic
basin to secondary clarifier) contributed to 74% (WWTP1) and 53%
(WWTP2) of the total removal, indicating that the secondary processing
(i.e., the biological treatment units) played an important role in the re-
moval of nano-TiO2. The higher removal efficiency in WWTP1 could be
explained by differences in tertiary treatment. WWTP1 used tertiary fil-
tration, which could remove smaller particles more effectively; while
WWTP2 used denitrification.

Fig. 2C shows the Ti concentration in the biosolid samples of the two
WWTPs, and Table 1 compares the total Ti concentration in biosolid
samples from different countries. The total Ti concentration in the two
WWTP biosolids was 1583–1653 μg Ti/g DW (WWTP1) and 971–
1216 μg Ti/g DW (WWTP2), respectively, indicating that biosolids
were themain repository of the influent nano-TiO2. This is in agreement
with the results reported previously showing that the removed Ti accu-
mulated in plant solids, includingprimary settling tank sludge, activated
sludge biomass and secondary clarifier solids (Kiser et al., 2009). Nano-
TiO2 can be removed effectively by its incorporation and/or co-aggrega-
tion with the settling flocs (Limbach et al., 2008). Compared with the
WWTPs in other countries (Table 1), the concentration of total Ti in
the two WWTP biosolids were much lower than that reported in the
USA (1000–6000 μg Ti/g DW) (Kiser et al., 2009), the UK (379–



Fig. 3.HRTEM (A, C) images, EDS (E) and Ti 2p XPS (G) spectra of clusters fromWWTP1 effluent (WWTP1-7, Fig. 2); HRTEM (B, D) images, EDS (F) and Ti 2p XPS (H) spectra of clusters
from the receiving surface water (RW-8, Fig. 1).

Table 1
Measured concentrations of total Ti in surface waters, WWTP effluents and sludges (including the results of this study).

Country Location Sources Filter Concentration of Ti Reference

Average Range Unit

UK Mid-Wales Surface water b0.45 μm 2.1 0.55–6.48 μg/L Neal et al., 2011
Austria Vienna Old Danube Lake N0.2 μm – 0.49–4.0 μg/L Gondikas et al., 2014
France – Seine River N 48.7 – μg/L Geertsen et al., 2014
China Shijiazhuang Surface river water N 67.4 52–86 μg/L This study
America Arizona WWTP effluent b0.7 μm – 5–15 μg/L Kiser et al., 2009
America Arizona WWTP effluent N 1–25 μg/L Westerhoff et al., 2011
UK – WWTP effluent b0.45 μm – 3.2–47 μg/L Johnson et al., 2011b
Canada Peterborough

Saskatoon
WWTP effluent b0.22 μm 1.0 ± 0.6 – μg/L Khosravi et al., 2012

China Shijiazhuang WWTP effluent N 35.0 26.9–43.1 μg/L This study
America Arizona WWTP sludge b0.7 μm – 1000–6000 μg/g Kiser et al., 2009
UK – WWTP sludge b0.45 μm 538 379–676 μg/g Johnson et al., 2011b
Canada Peterborough

Saskatoon
WWTP sludge b0.22 μm 175.3 ± 1.9 – μg/g Khosravi et al., 2012

China Shijiazhuang WWTP sludge N 1367 971–1650 μg/g This study

N: no filter was used. –: not available.
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676 μg Ti/g DW) (Johnson et al., 2011) and Canada (175 μg Ti/g DW)
(Khosravi et al., 2012).

3.3. Concentrations of nano-TiO2 in receiving waters

Fig. 4A shows the Ti concentration in the receiving waters, which
was in the range of 52–86 μg/L. This is significantly higher than that in
the Yuqiao Reservoir (representing regional background), which was
b5 μg/L. Nevertheless, total Ti concentrations in the receiving waters
were higher than that in the WWTP effluents (27–43 μg/L), implying
the presence of other important sources. Although the contribution (if
any) from factories located upstream that discharge directly to the
Xiaohe River is unknown, urban runoff could be an important contribu-
tor of Ti in river water. For example, TiO2 particles are used in large
quantities in exterior paintings, and these particles can leach from
building facades during rainfall and enter urban runoff, resulting in Ti
concentrations as high as 600 μg/L (Kaegi et al., 2008). Thus, Ti concen-
trations in some urban runoff could be higher than observed in these
WWTP effluents.

There are very few studies about the occurrence of nano-TiO2 in nat-
ural water systems. The concentration of Ti in the old Danube Recrea-
tional Lake, which receives nano-TiO2 from sunscreens due to bathing
and swimming, was reported to range from 0.49 to 4 μg/L (Gondikas
et al., 2014). Similarly, the Ti concentration in the b0.45 μm fraction in
surface waters of the UK averaged 2.1 μg/L with a range of 0.55–
6.48 μg/L (Neal et al., 2011). The fraction remaining on the 0.45 μm filter
was not determined in their study. Since N99% of nano-TiO2 would be
intercepted by 0.45 μm membrane, the level of nano-TiO2 in UK river
water could be underestimated. The total Ti concentration in the Seine
River at Paris was reported at 48.7 μg/L (Geertsen et al., 2014), which
is lower than observed in our study. Note that nano-TiO2 could cause
adverse effects to zebrafish even at low μg/L levels (Bar-Ilan et al.,
2013). The observed relatively high levels of Ti suggest thatmore atten-
tion should be paid to the potential ecological risk of nano-TiO2 dis-
charges to the Xiaohe River.

3.4. Ti accumulation in crucian carp from the Xiaohe River

The concentration of Ti in the tissues of crucian carp from the Xiaohe
River was significantly higher than that from Yuqiao Reservoir (Fig. 4B).
The highest concentration was found in the gut, skin and gill, while the
lowest was detected in the brain andmuscle of the fish. Previous inves-
tigations of the accumulation of nano-TiO2 in fish (e.g., zebra fish, gold-
fish and common carp) reported nano-TiO2 enrichment in fish
Fig. 4. Comparison of Ti concentration (A) in the receiving water and a remote control site, an
Shijiazhuang. Sampling points are identified in Fig. 1. YQ refers to Yuqiao Reservoir; RW refers
intestines, skin and gills (Qiang et al., 2015; Ates et al., 2013). However,
no significant accumulation of Ti was detected in fish brain, blood and
muscle, which was attributed to significant aggregation in fish intes-
tines, which results in larger particles that cannot easily penetrate
these tissues (Qiang et al., 2015). Nevertheless, the Ti concentration in
the muscle of fish collected from Binhe River was much higher than
that from Yuqiao Reservoir, indicating that Ti can accumulate in fish
muscle.

Previous studies showing no nano-TiO2 accumulation in fish muscle
were conducted in the laboratory with exposure periods shorter than
one month (Bar-Ilan et al., 2013; Fouqueray et al., 2013; Jovanovic et
al., 2015; Qiang et al., 2015; Yang et al., 2014). A recent 8-month expo-
sure study to nano-TiO2 reported that Ti accumulated in zebrafish heart
and brain in a time-dependent manner (Chen et al., 2011). Here, fish
were exposed to high TiO2 levels under natural conditions (e.g., Binhe
River) for a relatively long term (possibly the entire fish life span).
Long term exposure to nano-TiO2 can cause oxidative stress, which
may increase the permeability of fish epithelium cells (Handy et al.,
2008) and enhance penetration intomuscular tissue. Note that whereas
TiO2 in the Xiaohe River could be in form of bulk and/or aggregated
nano-particles, aggregates (as large as 1124 ± 331 nm) can enter the
blood stream through the intestines (Al-Jubory and Handy, 2013) and
possibly also through damaged tissue, facilitating Ti uptake and accu-
mulation in fishmuscle. In a 21-day experimentwith zebrafish exposed
to nano-TiO2 at 100 μg/L, Tiwas accumulated in zebrafish liver and brain
at 70–145, and 120–150 μg/gDW(Fang et al., 2016), respectively,which
were similar to the Ti tissue concentration measured in the present
study (Fig. 4B). Whereas we did not observe here obvious pathological
effects in Xiaohe River fish, another study of zebrafish exposed for up
to 13 weeks at 100 μg/L showed significant reproduction impairment
(Wang et al., 2011). This suggests that long term exposure to TiO2 in
river water may pose some ecological risks.

4. Conclusions

The growing use of nano-TiO2 in a variety of commercial products is
increasing the likelihood of incidental or accidental releases that reach
natural waters. Colloidal titanium found in the effluent from two
WWTPs and the receiving streams was predominantly in the form of
nano-TiO2 agglomerates. Although a majority of nano-TiO2 reaching
WWTPs was removed by the active sludge process, relatively high Ti
levels (27–43 μg/L) remained in the effluent at concentrations signifi-
cantly higher than natural background levels (b5 μg/L). However, total
Ti concentrations in the receiving waters (52–86 μg/L) were
d (B) that in the tissues of crucian carp from Yuqiao Reservoir, Tianjin and Xiaohe River,
to receiving water. * represents significant difference.

Image of Fig. 4
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surprisingly higher than in the WWTP effluents, indicating significant
contribution from other sources such as urban runoff containing leach-
ate fromexterior paintings. Accumulation of Ti in various fish tissues, in-
cluding edible tissue (muscle) was also observed. This underscores the
need for further assessment of the long-term risk to aquatic ecosystems
as well as effective approaches to mitigate unintended nano-TiO2

releases.
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