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ABSTRACT: Sunlight-induced photoformation of silver
nanoparticles (nAg), mediated by natural organic matter
(NOM), is significantly affected by the concentration of
Ag(I) and chloride. The initial photoformation rates of nAg in
Suwannee River humic acid (SRHA) and Suwannee River
natural organic matter (SRNOM) solutions were examined
under simulated sunlight irradiation. A critical induction
concentration (CIC) of Ag(I) (10 mg/L for SRHA and 5
mg/L for SRNOM, respectively) was observed, below which
the nAg formation was minimal. The threshold is attributed to
the interplay of reduction and oxidation reactions mediated by
NOM, reflecting the need to achieve sufficiently fast growth of
silver clusters to outcompete oxidative dissolution. The CIC
can be reduced by scavenging oxidative radicals or be increased by promoting singlet oxygen and hydrogen peroxide generation.
The presence of chloride effectively reduced the CIC by forming AgCl, which facilitates reduction reactions and provides
deposition surfaces. SRNOM is more efficient in mediating photoformation of nAg than SRHA, owing to their differed
phototransient generation. These results highlight prerequisites for the photoformation of nAg mediated by NOM, in which the
photochemistry and solution chemistry are both important.

■ INTRODUCTION

Silver nanoparticles (nAg) possess unique optical, electronic,
and antimicrobial properties and are the most widely used
nanomaterial in consumer products.1 When used as a strong
and wide-spectrum antimicrobial agent, nAg can be readily
incorporated into the matrix or the surface coating of textiles,
personal-care products, medical devices, household appliances,
and water treatment devices.1 However, unintended nAg
releases can adversely impact a wide range of organisms
including microorganisms, algae, fungi, plants, invertebrates,
vertebrates, and human cell lines.2 The acute toxicity of nAg
stems mainly from its ability to release Ag+,3,4 although
nanoparticle-specific toxicity has also been reported.5,6 The
release of nAg/Ag+ during the lifetime of these nano-enabled
products seems inevitable and in many cases significant,7,8

leading to concerns regarding its potential environmental risks.
The speciation of silver is critical for understanding the fate,

bioavailability, and toxicity of nAg. It is well-known that nAg
undergoes transformation processes including oxidation,
dissolution, and reactions with ligands.2 nAg can be oxidized
by oxygen, forming a Ag2O shell, which can subsequently

release Ag+.9,10 Ag+ can further complex with natural ligands,
such as S2−, Cl−, and natural organic matter (NOM).2,11

However, Ag+ can be readily reduced by NOM to form new
nAg under sunlight.12−16 The photoreduction mechanism was
suggested to be ligand-to-metal charge transfer (LMCT) and
reduction mediated by phototransients such as superoxide
(O2

−).14,15

The impacts of water chemistry, including pH and coexisting
cations, on the photoreduction process have been inves-
tigated.12,14,15 Photoreduction rates increase with increasing
pH,12,14,15 owing to the pH-dependent Ag+ sorption and
reductive potential of NOM. The presence of coexisting cations
reduced the formation rate of nAg, likely due to the competing
effect for sorption sites on NOM.14 Ca2+ was reported to
induce the aggregation and formation of larger nAg particles.12

Different NOM or NOM fractionations possess varying ability
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to photoreduce Ag+, which can be attributed to the inherent
reducing potential16 and the differential light-attenuation
ability.12 Concurrent oxidation and dissolution and reduction
reactions are previously reported to occur during the light-
induced size and morphology evolution of nAg suspen-
sion.13,14,17,18 In many cases, simulated sunlight was found to
accelerate the dissolution of nAg through photo-oxidation
processes.13,19 However, little is known regarding how
interactions between oxidative phototransients and silver
species influence the initial photoformation of nAg in NOM
solutions. Furthermore, little is known about the impact of
chloride, which significantly influences silver speciation in
aquatic environment, on the photoformation of nAg.
In the present study, we examine the sunlight-induced

formation of nAg mediated by two standard humic substances,
Suwannee River humic acid (SRHA) and Suwannee River
natural organic matter (SRNOM), over a wide range of Ag(I)
concentrations (0.05−20 mg/L). Our objectives were to (1)
examine the possibility of forming nAg under more-realistic
conditions found in sunlit natural aquatic systems and (2)
elucidate the role of silver and chloride concentrations in the
photoreduction process.

■ MATERIALS AND METHODS
Materials. Silver perchlorate (>97%), 2,3-bis (2-methoxy-4-

nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT, >
90%), furfuryl alcohol (FFA, 98%), N,N-diethyl-p-phenylenedi-
amine sulfate salt (DPD, ≥ 99%), horseradish peroxidase
(HRP, ≥ 250 units/mg), and terephthalic acid (TPA, 98%)
were purchased from Sigma-Aldrich. Deuteroxide (D2O, 99.8
atom % D) was provided by Tokyo Chemical Industry.
Isopropyl alcohol (>99.7%) was purchased from Nanjing
Chemical Reagent Co., Ltd., China. All solutions were prepared
using deionized water (18.2 MΩ·cm) obtained from an ELGA
Labwater system (PURELAB Ultra, ELGA LabWater Global
Operations).
Preparation of SRNOM and SRHA Solutions. NOM

samples, including SRNOM and SRHA, were obtained from
the International Humic Substances Society (IHSS, Saint Paul,
MN). The stock solutions of NOM were prepared by dissolving
40 mg of sample powder into 100 mL of deionized water. It was
then sonicated in a bath sonicator (KH-800TDB, Kunshan
Hechuang Ultrasonic Instrument, China) at 50 W for 15 min.
After adjustment of the pH to 7.0 ± 0.2 using 0.1 M NaOH, the
NOM solutions were filtered through a 0.45 μm membrane
(Pall). The total organic carbon (TOC) of NOM solutions was
quantified by a TOC analyzer (TOC-5000A, Shimadzu). Part
of the SRNOM solution was dialyzed using dialysis bags (1000
Da, Union Carbide) to remove the chloride.
Photoreduction of Ag+. The photoreduction experiments

were carried out by irradiating 30 mL of the Ag+ and SRNOM
or SRHA mixture stirred at 200 rpm in a 50 mL cylindrical cell
equipped with a water-circulating jacket for temperature
control. The concentration of Ag+ (as AgClO4) and Cl− (as
NaCl) stock solutions are 500 and 300 mg/L. A total of 1.08
mL of 139 mg C/L SRNOM stock solution or 0.69 mL of 217
mg C/L SRHA stock solution was mixed with predetermined
amount of Ag+ and Cl− stock solutions to yield the experiment
solution of 30 mL with total Cl− concentration of 0.5 mg/L.
The pH of the mixture was 7.0 ± 0.2 without buffer. The
temperature of the circulating water was maintained at 20 ± 0.1
°C by a temperature control system (DC0506, Shanghai
FangRui Instrument Co., Ltd.). The dissolved oxygen

concentration in the test solution during the reaction remained
constant at around 8 mg/L, as determined by an oxygen
microsensor (PreSens, Precision Sensing GmbH; Figure S1).
The simulated sunlight was provided by a 50 W xenon lamp
(CEL-HXF300, AULTT) shining from the top of the
cylindrical cell without light filters. The lamp spectrum was
similar to that of natural sunlight with the wavelength of >300
nm (Figure S2). The irradiation energy at the water surface was
438 mW/cm2, which was monitored periodically using a
radiometer (CEL-NP2000−10, Ceaulight; Beijing, China).
Samples were exposed to the same light intensity by adjusting
the output energy to offset the decay of the lamp. The detailed
experimental setup can be found in Figure S3. A small aliquot
of 0.5 mL of solution was withdrawn periodically from the cell
during the irradiation for analysis. Dark controls were
conducted in the same experimental setting with the cell
wrapped with aluminum foil and the xenon lamp off.

nAg Analysis. The formation of nAg was monitored by the
absorbance of its surface plasmon resonance (SPR). UV−vis
spectra of the samples were recorded using a double beam
spectrophotometer (UV-6100, Mapada) in a quartz cell with 1
cm light path length. The detection limit for this method is
around 0.01 mg/L nAg with diameter of 10 nm ±2 nm (Figure
S4). The particle size of nAg was measured by dynamic light
scattering (DLS) using a ZEN 3500 Zetasizer Nano ZS
(Malvern) equipped with a 532 nm laser. In some experiments,
the samples were concentrated by ultrafiltration membranes
(Amicon Ultra-15 3 kDa, Millipore), dried on glass slides, and
analyzed by an X-ray diffraction spectrometer (XRD, X-TRA,
ALR).

ROS Determination. The production of 1O2, O2
−, H2O2,

and ·OH and lower-energy hydroxylating species by SRNOM
and SRHA was investigated using probe molecules as described
previously.20−25 O2

− generation was quantified by the
formation of XTT formazan from XTT at an initial
concentration of 0.05 mM. XTT formazan was quantified by
its absorption at 470 nm. The extinction coefficient of XTT
formazan is 23 800 M−1 cm−1.22 Singlet oxygen formation was
monitored by the loss of FFA with an initial concentration of
0.05 mM.26,27 The FFA concentration was measured at the
detection wavelength of 220 nm using high-performance liquid
chromatography (HPLC) with a Zorbax Eclipse XDB-C18
column (Agilent 1100, Agilent Technologies). The mobile
phase was 30% acetonitrile and 70% 0.1 wt % phosphoric acid
at a flow rate of 1 mL/min. The production of ·OH and lower-
energy hydroxylating species was quantified by the loss of
TPA.23,25,28 TPA was added at a concentration of 0.5 mM into
the NOM solutions. The residual TPA was quantified by HPLC
using a mobile phase of 30% acetonitrile/70% 0.1 wt %
phosphoric acid and a detection wavelength of 254 nm at a flow
rate of 1 mL/min. H2O2 generation was measured by the HRP
(5 mg/L) catalyzed oxidation of 1 mM DPD.24 The stable
oxidation product, DPD•+, was measured by its absorbance at
551 nm using a UV−vis spectrometer.

Batch-Sorption Experiments. Batch sorption experiments
were conducted in 40 mL polypropylene centrifuge tubes filled
with solutions containing 5 mg C/L SRNOM/SRHA and 0.1 to
20 mg/L Ag+. The tubes were wrapped with aluminum foil and
agitated on a reciprocating shaker at room temperature for 1 h,
which was sufficient to achieve complexation equilibrium. A
previous study suggested that the complexation between Ag+

and NOM was almost instant (<1s).29 The free Ag+ was
detected using a silver ion-selective electrode (9616BNWP,
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Thermo) with a potentiometer (ORION 5 STAR, Thermo) at
room temperature. The amount of AgCl formation was
calculated by the loss of Cl− in solution, which was determined
using an ion chromatography (ICS-1000, Dionex) with a
Dionex IonPac AS11-HC analytical column (250 mm × 4
mm). The mobile phase (1.0 mL/min) was 10 mM KOH. The
concentrations of AgCl2

− and AgCl3
2− were several orders of

magnitude lower than AgCl at experimental conditions and
were consequently not considered in the mass balance.30 The
NOM-complexed Ag+ at a specific equilibrium concentration
was calculated based on the mass balance.

■ RESULTS AND DISCUSSION

Threshold Concentration of Ag(I) for the NOM-
Mediated Photoformation of nAg. The UV−vis absorption
spectra of the solution containing 20 mg/L Ag(I) and 5 mg C/
L SRNOM during the simulated sunlight irradiation are shown
in Figure 1a. The characteristic peak of the SPR of nAg at 409−
431 nm was observed during the irradiation, which was
consistent with previous photoreduction studies using humic
substances.14,16 An absorption minimum appeared at 320−334
nm; this was caused by the interband transition in nAg, which
led to the damping of plasmon oscillations.31 Figure 1b
presents the formation kinetics of nAg under simulated sunlight

exposure. The intensity of the SPR peak increased with longer
irradiation time and plateaued after 40 min. Meanwhile, the
wavelength of the SPR peak shifted from 409 to 431 nm in the
initial 10 min, indicating the growth of nAg particle size upon
simulated sunlight exposure (Figure 1c).32,33 The wavelength of
the SPR peak remained constant afterward, suggesting that the
particle size plateaued. The DLS measurements showed a sharp
increase of nAg size in 20 min, generally consistent with the
initial shift of SPR peaks (Figure 1d). However, the particle size
measured by DLS still increased after 20 min of irradiation.
This could be attributed to morphology changes or the
aggregation of nAg.14,34

To better understand the role of Ag(I) concentration and
NOM properties in the photoreduction process, nAg formation
kinetics were compared in the presence of SRNOM and SRHA.
The initial formation rate of nAg, r = (dA(t)/dt)t→0, was
determined by linear regression of the initial increase of the
SPR absorbance at 410 nm. The regression was carried out over
2 min of irradiation (see an example in Figure S5). The r has
been reported to be proportional to the concentration of Ag(I)
and NOM:15

=r k[Ag(I)][NOM] (1)

Figure 1. (a) UV−vis spectra of 20 mg/L Ag(I) and 5 mg C/L SRNOM during the simulated sunlight irradiation at pH 7.0 ± 0.2. (b) Formation
kinetics of nAg during simulated sunlight irradiation and under dark condition in the presence of 20 mg/L Ag(I) and 5 mg C/L SRNOM, as
quantified by the SPR absorbance at 410 nm. (c) Evolution of the SPR wavelength during the photoformation of nAg. (d) Particle diameter of nAg
as a function of irradiation time as measured by dynamic light scattering.
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Figure 2a shows the initial formation rate of nAg as a
function of Ag(I) concentration in irradiated 5 mg C/L NOM
solutions. It is worth noting that the Ag(I) concentration here
refers to the total silver concentration including all silver
species. Because the NOM concentration was set to be 5 mg
C/L, r was expected to increase with increasing Ag(I)
concentration according to eq 1. However, the profiles
observed were composed of two distinct regimes: Regime I,
at low Ag(I) concentration, in which no SPR absorbance of
nAg was observed; and Regime II, once the Ag(I)
concentration reached a threshold (referred to as critical
induction concentration, CIC), in which r increased with
increasing Ag(I) concentration. The CIC was 5 mg/L Ag(I) for
SRNOM and 10 mg/L Ag(I) for SRHA, as suggested by the
long-term irradiation tests (i.e., 6 h) (Figure 2b,c). It is worth
noting that the CIC could be lower than what it appears to be
in Figure 2a due to the extremely low initial formation rate near
CIC, which can be determined in the long term irradiation
tests. The CICs are much higher than the detection limit of the
SPR method, 0.01 mg/L, and consequently can not be
attributed to the detection method of nAg. The initial
formation rate of nAg in NOM solutions decreased with

decreasing light intensity (Figure S6a). Nevertheless, the CIC
remained constant under simulated sunlight with different light
intensities (Figure S6b).
The XRD pattern of the samples initially containing Ag(I)

above CIC showed characteristic peaks for the (111), (200),
and (220) planes of metallic silver (Figure 3b,d),35 as well as a
characteristic peak (2θ = 32.24°) for the (200) plane of AgCl.
The total Cl− concentration in the SRNOM and SRHA
solutions was 0.5 mg/L, leading to the formation of AgCl (see
the discussion about silver speciation below). The coexistence
of metallic silver and AgCl during the photoformation of nAg
mediated by riverine NOM was also reported in a previous
study.15 The characteristic peaks of metallic silver were found in
the XRD pattern of the sample initially containing Ag(I) below
CIC (i.e., no SPR observed) but with very low intensity (Figure
3a,c). Note that the detection limit of XRD is around 5%. The
small amount of metallic silver detected could be attributed to
the presence of dispersed Ag0 or small silver clusters, which
cannot induce SPR. Previous study suggested that noble metal
clusters, such as Au clusters, with diameter smaller than 5 nm
show little SPR but that show a sharp SPR with diameter of 5−
50 nm.36−38 According to the UV−vis and XRD data, the

Figure 2. (a) Initial formation rate of nAg in 5 mg C/L SRNOM or SRHA solutions as a function of the Ag(I) concentration under simulated
sunlight irradiation. Formation kinetics of nAg under simulated sunlight in the presence of 5 mg C/L (b) SRNOM and (c) SRHA at given
concentrations of Ag(I) as quantified by the SPR absorbance at 410 nm. The solution pH was 7.0 ± 0.2, and the total chloride concentration was 0.5
mg/L.
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photoformation of nAg was minimal if not completely
eliminated below CIC.
The concentrations of silver species including free Ag+,

NOM-complexed Ag+, and AgCl in 5 mg C/L NOM solutions
were summarized in Figure 4. The silver were mostly in the
form of free Ag+ and NOM-complexed Ag+. Over the entire
Ag(I) concentration tested, free Ag+ constituted 20−75% of
total silver in SRNOM solution and 21−68% of total silver in
SRHA solution. NOM-complexed Ag+ constituted 20−73% of
total silver in SRNOM solution and 26−67% of total silver in
SRHA solution. The AgCl formed at low Ag+ concentrations
due to its small solubility product, 1.77 × 10−10.2 Its
concentration stabled after the majority of chloride in the
system was scavenged. The speciation diagram suggests that the
CIC was not caused by the precipitation of Ag+ as AgCl.
Interplay of Reduction and Oxidation Reactions

Affected the CIC. The observation of a minimum threshold
concentration, CIC, implies the presence of antagonistic
reactions to the photoreductive formation of nAg. We
hypothesize that this can be attributed to the interplay of
reduction and oxidation reactions between phototransients and
silver species, which control the nucleation and growth of silver
clusters. Concurrent oxidation and dissolution and reduction
reactions are previously reported to occur during the light-
induced size and morphology evolution of nAg suspen-

sion.13,14,17,18 In many cases, simulated sunlight was found to
accelerate the dissolution of nAg through photo-oxidation
processes.13,19

NOM can reduce Ag+ to silver atoms (Ag0) under simulated
sunlight irradiation through two possible pathways: (1) direct
transfer of electrons to complexed Ag+ through the LMCT
pathway or (2) generation of O2

−, which, in turn, reduces Ag+

(eqs 2 and 3):14,15,39

+ →+ −Ag e Ag0
(2)

+ → ++ −Ag O Ag O2
0

2 (3)

+ →Ag Ag Ag0 0 0
2 (4)

Ag0 forms dimers when it collides:40

+ → +Ag Ag Agm n m n (5)

Further coalescence results in silver clusters and, eventually,
nAg particles.41

Under solar irradiation, SRNOM and SRHA can be excited,
generating singlet excited state NOM (1NOM*) and charge-
separated species (NOM±).42 NOM± can react with the
complexed Ag+ through the LMCT pathway. 1NOM* further
undergo energy-transfer or charge-transfer reactions to form
various phototransients including NOM±, O2

−, 1O2, H2O2, and

Figure 3. XRD spectra of samples containing (a) 3 mg/L Ag(I) (below CICSRNOM) and (b) 10 mg/L Ag(I) (above CICSRNOM) in 5 mg C/L
SRNOM solutions; (c) 5 mg/L Ag(I) (below CICSRHA) and (d) 15 mg/L Ag(I) (above CICSRHA) in 5 mg C/L SRHA solutions after 30 min
simulated sunlight irradiation. The solution pH was 7.0 ± 0.2, and the initial chloride concentration was 0.5 mg/L.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.7b05645
Environ. Sci. Technol. 2018, 52, 4040−4050

4044

http://dx.doi.org/10.1021/acs.est.7b05645


·OH and lower-energy hydroxylating species, which are
expected to mediate the redox reactions of silver species.42,43

The O2
− generation in SRNOM and SRHA solutions was

quantified and compared in Figure 5a. A recent study suggested
that the XTT assay was not specific to O2

− in some cases.44

Nevertheless, the reduction of XTT was almost completely
inhibited in the presence of 15 mg/L superoxide dismutase
(Figure S7), confirming the generation of O2

−.44 The rate of
O2

− generation in the SRNOM solution was higher than that in
the SRHA solution (Figure 5a). Other than reductive O2

−,
SRHA and SRNOM are known to generate oxidative ROS,
including 1O2, H2O2, and ·OH and lower-energy hydroxylating
species under solar irradiation,45,46 which are compared in
panels b−d of Figure 5, respectively. SRNOM produced similar
amount of 1O2 as compared to SRHA (Figure 5b). The
apparent singlet oxygen quantum yields of SRNOM and SRHA
were calculated to be 1.60% and 1.16% (see details in the
Supporting Information), respectively, generally consistent with
previous reported values (i.e., 2.02 ± 0.23% and 1.81% for
SRNOM and 1.38 ± 0.08% and 1.60 ± 0.08% for
SRHA).20,45,47 SRNOM generated less H2O2 and ·OH and
lower-energy hydroxylating species than did SRHA (Figure
5c,d). The lower ·OH and lower-energy hydroxylating species

generation rate of SRNOM agrees with a previous report.25

The oxidizing species, including 1O2, H2O2, and ·OH and
lower-energy hydroxylating species can readily oxidize Ag0 or
nAg at neutral pH.10,17,48−51 The steady-state concentration of
1O2 and ·OH and lower-energy hydroxylating species in 5 mg
C/L SRNOM solution are calculated to be 3.2 × 10−13 and 1.3
× 10−16 M, respectively (see details in the Supporting
Information). If we assume a diffusion-limited reaction constant
between Ag0 and these phototransients (k = 1 × 1010 M−1

s−1),39 the reaction rate constants are 3.2 × 10−3 s−1 and 1.6 ×
10−6 s−1 for 1O2 and ·OH and lower-energy hydroxylating
species, respectively. It is worth noting that there is strong
microheterogeneity of phototransients in irradiated NOM
solutions.52 For example, the 1O2 in NOM microenvironment,
[1O2]NOM, is much higher than [1O2] measured by FFA
method. The reactions between Ag0 and 1O2 happened mostly
in NOM. If we use the [1O2]NOM/[

1O2] of 130 from the
literature,52 the reaction rate constant between Ag0 and 1O2 can
be as high as 0.42 s−1. This indicates that Ag0 can potentially be
oxidized by phototransients generated by NOM within a short
time scale. Previous studies suggested that the interactions
between these oxidizing species and citrate-coated/bare nAg
facilitated their photoinduced dissolution process.17,53 SRNOM

Figure 4. Speciation of silver in 5 mg C/L (a) SRNOM and (b) SRHA solutions plotted as percentages of silver species vs the initial total Ag(I)
concentration; (c) sorption isotherms plotted as complexed concentration (qe, mg/kg C) vs aqueous-phase concentration (Ce, mg/L) of Ag+ at
equilibrium in the presence of 5 mg C/L SRNOM or SRHA at pH 7.0 ± 0.2. The total chloride concentration was 0.5 mg/L. Sorption experiments
were run in triplicate.
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generated more reductive O2
−, a similar amount of 1O2, but less

H2O2 and ·OH and lower-energy hydroxylating species than
SRHA, consistent with its lower CIC (i.e., NOM with higher

O2
− generation and lower 1O2, H2O2, ·OH, and lower-energy

hydroxylating species generation possesses lower CIC value).

Figure 5. (a) XTT formazan production, representing O2
− generation; (b) FFA degradation, representing 1O2 generation; (c) H2O2 generation; and

(d) TPA degradation, representing •OH generation as a function of irradiation time with 26.8 mg C/L NOM under simulated sunlight. Error bars
represent plus or minus one standard deviation from the average of triplicate tests.

Figure 6. Initial formation rate of nAg in 5 mg C/L SRNOM solutions as a function of the Ag(I) concentration in the presence of (a) isopropyl
alcohol and (b) D2O under simulated sunlight irradiation. The solution pH was 7.0 ± 0.2, and the initial chloride concentration was 0.5 mg/L.
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To further probe the interplay of oxidation and reduction
reactions in the photoformation of nAg, we carried out
scavenger tests. Isopropyl alcohol was first introduced into
the reaction system as a radical scavenger, especially for ·OH
and lower-energy hydroxylating species.54,55 The CIC of
SRNOM decreased from 5 to 2 mg/L as the concentration
of isopropyl alcohol increased from 0 to 30%, as shown in
Figure 6a. It suggests that the CICSRNOM can be lowered by
scavenging oxidative radicals in the system. Another test was
carried out in the presence of D2O as shown in Figure 6b. The
presence of D2O had no impact on the measurement of nAg
SPR (Figure S8). D2O can promote the lifetime of 1O2 (16-fold
greater than in H2O solution)56 and consequently increase its
steady-state concentration. This is caused by the kinetic solvent
isotope effect as the 1O2 deactivation rate constant is much
lower in D2O than that in H2O.

56 Meanwhile, the H2O2
generation rate by SRNOM was also expected to increase in
the presence of D2O.

57 The CICSRNOM was found to increase
from 5 to 15 mg/L as the concentration of D2O increased from
0 to 10% (Figure 6b). In the presence of 40% D2O, the nAg
formation kinetics was low even at 30 mg/L Ag(I). These
results suggest that the CIC can be manipulated by scavenging
or promoting the oxidative phototransients, indicating that the
CIC can be at least partially attributed to the balance between
redox reactions.
As the Ag(I) concentration exceeded CIC, nAg started to

form. This indicates that the balance between redox reactions
can be modulated by the Ag(I) concentration. We speculate
that higher Ag(I) concentration facilitates the nucleation and
growth of silver clusters. The presence and growth of silver
clusters can facilitate the photoreduction process by increasing
the redox potential of Ag+ and inducing the catalytic reduction
of Ag+.39,58−60 Free Ag+ in solutions has a redox potential of
−1.8 V (Ag+ + e− → Ag0; E0 = −1.8 V versus NHE).59 Thus,
silver atoms are not stable compared to the Ag+/e− couple. In
the presence of silver clusters, Ag+ was mainly reduced on the
cluster surface. The redox potential of Ag+ increases with
increasing coexisting silver cluster size and eventually reaches
+0.8 V in the presence of nAg particles.60,61 Silver clusters were
suggested to rapidly store and transfer electrons to oxygen or
Ag+, catalyzing the reduction reactions of Ag+.39,58 It has been
reported that the presence of nAg led to 4 times faster Ag+

reduction by O2
−.39 However, the growth of silver clusters

hindered the oxidation process as larger silver clusters are more
resistant to oxidation and subsequent dissolution due to its
higher redox potentials and lower specific surface area.2,62,63 We
speculate that higher Ag(I) concentration can facilitate the
initial nucleation and growth of silver clusters by increasing the
kinetics of coalescence among Ag0 (eq 4) or small silver clusters
(eq 5). It may also promote the kinetics of surface Ag+

reduction on silver clusters, which leads to their growth.
Once the Ag(I) concentration exceeds the CIC, silver clusters
undergo fast coalescence and surface Ag+ reduction, which
helps them grow to a critical size at which reduction out-
competes oxidation and subsequent dissolution.
At low silver concentrations, a significant part of silver will be

complexed with NOM. An earlier study suggests that the
photoreduction process involves Ag+ binding to NOM.14 Thus,
the initial formation of silver clusters can be affected by the
complexed Ag+ concentration in NOM molecules. The
complexed Ag+ concentration was much higher than that in
the bulk solution depending on the complexation affinity of
NOM. The carbon-normalized Ag+ complexation affinities of

SRNOM and SRHA were compared in Figure 4c. SRHA had
stronger complexation affinity than SRNOM at high silver
concentrations, consistent with a previous study on the Ag+-
NOM interactions.29 Their complexation affinities were similar
at low silver concentrations. At the Ag(I) concentrations of 5
mg/L (CICSRNOM) and 10 mg/L (CICSRHA), the complexed
Ag+ concentrations in SRNOM and SRHA were similar. Thus,
the differed CIC of SRNOM and SRHA was not caused by the
different complexed Ag+ concentration in NOM. The higher
ability of SRNOM in mediating the photoformation of nAg is
most likely due to its higher reductive phototransient
generation but lower oxidative phototransient generation.

Impact of Chloride on the CIC. Chloride is ubiquitous in
natural aquatic systems and is known to strongly influence the
speciation of silver and the dissolution of nAg.18 To test the
role of Cl− in the photoformation of nAg, nAg formation
kinetics in SRNOM solution was determined at various Cl−

concentrations as shown in Figure 7. The CICSRNOM was found

to decrease with increasing Cl− concentration. It decreased
from 10 to 3 mg/L as the Cl− concentration increased from
0.23 to 1 mg/L. In another experiment, we used dialysis
method to remove the Cl− ion from the SRNOM solution
(data labeled as 0 mg/L Cl− in Figure 7). There was no nAg
formation in the dialyzed SRNOM solution at silver
concentration of 20 mg/L. Note that part of the low-
molecular-weight fraction of SRNOM (∼15%) was removed
during dialysis. A previous study suggested that all size fractions
of SRNOM were photoactive and the difference of size
fractions on the photoreduction of silver was caused by the
differential light attenuation.12 Thus, the inhibited nAg
formation in the dialyzed SRNOM solution was attributed to
the removal of Cl− rather than the removal of low-molecular-
weight fraction of SRNOM.
AgCl is a semiconductor photocatalyst that generates

electron−hole pairs under simulated sunlight.64 The electron
transfer can reduce Ag+ at the surface of AgCl, which produces
Ag0 atoms that potentially combine with adjacent atoms to
yield silver clusters or nAg.30,64 Furthermore, on irradiation,
AgCl itself can partially transform into nAg.65,66 This process is
often used to prepare Ag@AgCl photocatalyst.64 A recent study
also suggested that an important role of AgCl in the

Figure 7. Initial formation rate of nAg in 5 mg C/L SRNOM solutions
as a function of the Ag(I) concentration at various chloride
concentrations under simulated sunlight irradiation. The solution pH
was 7.0 ± 0.2.
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photoreduction of Ag+ in the presence of peptides was to
provide deposition surfaces.67 However, The coexisting AgCl is
also known to generate various oxidizing species including
holes, chlorine atoms, ·OH, hydrogen peroxide, and carbonate
radicals.68 The formation of AgCl also decreased the total
amount of free and NOM-complexed Ag+. Our results suggest
that the overall effect of AgCl in the tested conditions is to
facilitate the photoformation of nAg. Nevertheless, the presence
of AgCl does not necessarily lead to the formation of nAg
through aforementioned mechanisms in our systems (Figure
4a,b). This result indicates that photoformation of nAg is still
controlled by the redox balance after taking the role of AgCl
into consideration.
Environmental Implications. Our work demonstrates the

existence of a threshold concentration of Ag+ for the
photoformation of nAg mediated by NOM. The CIC is
defined by the photochemistry of NOM and is influenced by
the water chemistry. The CIC of NOM in natural conditions
could be lower than the CIC values of SRNOM and SRHA,
which are both in the milligram per liter range. However, the
Ag+ concentration in natural surface waters is in the range of
nanograms to micrograms per liter,69,70 several orders of
magnitude lower than the CIC determined in our experimental
settings. The growth of silver clusters is expected to be slow
due to the extremely low mass transfer at environmental
concentrations, which may not be sufficiently fast to out-
compete oxidative dissolution. Thus, the possibility of NOM-
mediated photoformation of nAg in natural aquatic conditions
needs to be further scrutinized. The existence of a threshold
also indicates that some of the results acquired using high Ag+

concentrations cannot be linearly extrapolated to environ-
mental conditions. The photoformation of nAg could be
potentially relevant for surface waters heavily impacted by silver
input, such as wastewater effluents or mine drainage with
comparatively high silver concentrations. In that case, the most-
abundant silver species is often silver sulfide, which can be
transformed into nAg by photoinduced Fe redox cycling.71 In
another possible scenario, the photoformation of nAg could be
triggered by pre-existing silver seeds. Silver clusters can be
generated from the reduction of Ag+ in the presence of
microbes, extracellular polymeric substances, or humic
substances under natural conditions without light expo-
sure,16,72−74 serving as seeds for faster photoreduction
reactions.
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