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Abstract

Shewanelle alge BrY, a disstrilatory won reducing bacterivm (DIRB), tansformed inert ferrde oxides that are common in
sediments, aquifor matevial and passivated pormeable reactive lron barriers (PRBs), producing dissolved and sorbed Fe(1f} capable
of rapidly redocing and imemobilizing CrVI). The effect of groundwater chiemistry on the formating and reactivity of such micro-
bial-produced, ablotic reductants was investigated. Batch reactors with high catbouate concentration (10 mbi were the most
reactive, removing 66.0%.2 2.8 of Cr (VD) (76 mg/l) from hHawid phase within 5 min. Treatments with bigh concentrations of
sulfate (3.2 mbd), chloride {10 M), phosphate (1 mb) or silica (0.75 mM) wers less reactive (about 40% removal). Loss of
reactivity was observed possibly due w oxidation of Fe(ll) {sorbed and dissolved) by Cr{VD, Nommalization of Cr{VI) removal to
the mass of _b,ioganiu solid present showad th\ f"c;-?lowing modar CrFe ratios i sofid phase: 0.185 £0.041 {carbonate), 0.146
#0013 (sulfare), 0092+ 0.010 (siliva), 0075 = 0,012 (phosphate) and 0.062 « 0.012 (chdoride). Overall, these results show that
bacterial transformation of tnert femic oxides can contribute to the (abiotic) natural attemmmn of Cr(V1) in and around PR_Bs md
that groundwater chermistry is an important deterrminant of biogenic sobds te’u‘tmtv ‘
© 2005 Blsevier SAS. All rights reserved. :
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candd sodl [39], Comunon weatment technologies. reduce
Cr(VTy to Cr(TiD), which is then precipitated as Cr{OH),
at high pH {13} Ce(VIY in groundwater can also be
reduced by organic and inorganic matter present in the
s0il [6,33], or by microorganisms [34,45,46], although
these natural attenuation processes are rarely sufficlen
to temove Cr(V1) contamination to acceplable levels.
Permeable reactive barriers (PRI3s) are a cost-effec.
tive alternative to remove Cr(VI) and other pollutants in
situ as groundwater moves through reactive material
phx:_f.d perpendicutar to the flow path of the plume

1. Introduction
Hexavalent cheominm generated in tanning and plat-

ing indusiries is a contarminant of significant concern
due to its high toxicity and mobility in groundwater
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[37]. BMost PRBs use granular zero-valent fon (ZVI)
as reactive material [27.44] ZV1 s a powerful reductant
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(B, =-0.44 V) that can be used to trest a wide variety
of oxidized pollwanis, inchuding chiorinated solvents,
niteate, nitro-arormatics, and V(YD) [37,44,531 In the
case of chromium, treatment involves Cr{VI) reduction
coupled to ZVI oxidation to Fe(l) and Fe(lll) [5], re-
sulting in the formation of an insohible crystailine solid
[38]. Reaction kinetics is very last, proportional o iron
qurface concentration and siower at high pH values [2].
Fe-Cr solids are very stable, as Cr associated to fermie
axides does not dissolve easily with changes in pH [4,
131

A, potential concern regarding ZY1-PRBs is their
long-term performance, which can be inderad by pas-
sivation and clogging of the iron media. Precipitation of
iron-bearing solids {oxides, carbonates, and subfides)
has been reported for 26% of the installed basriers, ac-
counting for losses on porosity ranging from 1.5 to 15%
per year {533 The amount, characteristics and spatial
distribution of precipimtes are mfluenced by the tlow
rate, groundwater chemistry, and microbial processes
[15,20,26,44}. Passivation increases with the emlency
of corrosion products to precipitate and occlude reactive

sites {15,26]. Inert precipitates that have been found m
ZV1 PRBs include iepidocrocite, alkaganeits, mackina- .

wite, ferrihydrite, goethite, and siderie (16,201 Some
of these inert previpitates in and around FRBs can be
dissalved andior transformed by chemical or enzymatic
reactions to becoms powertl reductants and enhance
the overall reduction capacity of the system [11,18,
51). For example, dissimilatory iroa reducing bdumm
(DIRB) could be stimulated to reductively dissolve pas-
sivating Fe(ll-oxide layers and/or generate reactive,
surface-associated Fe(lT) speeies, to enhance PRE treat-
ment efficiency [18,28,30,32].

Shewanello species are facultative DIRB that can
grow anacrobically wilizing either H; commonly pro-
duced in PRBs during anaerobic ZV1 corrosion) or lac-
tate as an electron donor, and either flumarate, ciftate, of
malate as o carbon source. These bacteria can respie
with a wide variety of electron acceptorss, including
03, nitrate, Fe(llly, Ma(IV), fumarate, and thiosuifate
[8,9,18,57%. Due to their metabolic versatility, Shawo-
nella sp. have been the subject of mich research for
environmental remediation applications. For example,
Shewanella alga BrY is known to reduce 2 substantial
fraction (8-18%) of the ert iron{Hi) oxide content of &
variety of soil and subsurface materials [42], generating
ferrous solids that can dechiorinate carbon tetrachloride
and reduce CrVD) [3.18,32,547. Bioaugmentation of
ivon columns with BryY has also been reported o an-
hance the removal of nitrate [17], which can also be

respived by BrY, However, strategies 1o expiolt the re-
duction capubilities of Shewanelia sp. in complex en-
vironmental systems have uot yet been developed, and
tittde i3 known about how groundwater chemistry al
fects their Fe(lIl) reducing activity and the reactivity
of the resuiting Fe{ID-bearing sulids.

This paper investigates the ability of Shewanelly
alga BYY 1o transform inert ferric precipitates into re-
active solids aml dissolved Fe(Il) capable of reducing
Cr(VT), Emphasis was placed on characterizing how
different anions comunonly found i groundwater affect
the formation and reactivity of such reductants. In
doing so, information was obtamed on the effect of
groundwater chemistry on microbial-promoted abiotic
reductive processes that contribute to natural attepua-
fion of oxidized pollutants, This information also en-
hances our understanding of the roles of facultative
DIRB in poilution control in and around PRBs.

2. Materials and methods
2.1 Feflil) oxide synthesis

A hydrous ferric hydroxide was used ag a model of
ferric precipitates. 1t was synthesized by neutralizing a
FeCly solution {108 g/l of distilled water) with 10N
NaQH [41]. The oxide was washed six times {20 min
each) with D water by centrifuging at 10,000 rpm. The

resulting sludge was preserved at 4 °C, and then itwas

re-suspended in anoxic water, under No/COy (BU:20)
aimosphere, to achieve a final concentration of 1 M.

2.2, Shewanello alga BrY culture

Shewanelln alga BrY (ATCC 51181) was obtained
from American Type Culture Collection (Manassas,
VAY. Cells were grown i 560 ml of fryptie soy broth
(30 g/l) and incubated on a rotary shaker at 30 *C and
90 rpm for 15 hows. Cells were then centrifuged st
10,000 tpm and 4 °C for 20 min and washed three
times in PIFES (piperazine-1 4~b1a{2 -ethanesulfome
acidy) solution {20 mM).

2.3, Bingenic solids generation

One hundred mi of ferrihydrite solution (1 M) was
added to 800 ml of fresh water medium, containing {in
rag/ly KaBOs (40), NaNO; (163, MgCly6H,0 {12y,
Al (6.7), NHNOs)6H0 (0.002), CuS0,5H;0
(0.002), ZnS0.7H,0. (0.002), CoSO,THO (0.002),
(NHO6M07024 (0.001), HzB0; (0.0004). 10 ml of
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Takle 1
Anions added i excess for blogenic solids preparation
Set Fautar Hevated Rationale
Goncemration
{rmd Ay
i Casbonate (HCO; 700 1 Backuround carbonate concentration veporied for Copenhagen Freight Yard
[23% expected w be at the upper Himit of typical groundwater catbonate con-
CETtanons
pA Siliea (509} 075 Upper Hmit reported for typical groundwater [12]
3 Phosphate (PO, i ‘ Average mgh groundwater concentration [41,30]
4 Chioride (O 16 Level used by Klavsen et ab. {26} effects of this concentration on TGE
reductive dechicrnation were mixed
& Sulfate (50,5 42 Average high groundwater concentration [13.20,55, 60

each, Wolfe's vitamin and mineral solutions [24] and
sadivm lactate as electron donor (20 nuvl) were added.
The pH was adjusted to 7.0. Acrobically grown bacteria
(BrY) were transferred to 50 ml of described mediam,
and added to the systern, The final volume was adjusted
10 1 L All procedures were performed ingide a Coy
anaerobic chamber. The original mediun was modified
by addition of one of the next anions in high concen-
tration to test fis effect on production and reactivity of
the biogenic reduced solids: carbonate (10 mM), sihea
(0,79 M), phosphate (1 M), chloride (10 m) and
sulfate (3.2 mM), as summarized in Table 1. The media
were kept in the anagrobic chamber for 43 days, when a
noticeable change in color way evident from reddish to
dark brown in at least two biogeaic solids, Survival of
BrY was tested by plating particles of the reduced so-
lids in marine agar, under aerobic conditions.

2.4, Chromium reduction in batch reaclors

Batch experiments were conducted o characterize
the Cr(VI)-reduction eapability of biogenic solids
formed by BrY under different water chemistry condi-
tions., Sets of five replicate anaerobic bateh reastors
containing a 10 mi aliquot of blogenic solids suspen-
sion and hexavalent chromium were prepared for each
of the five treavments {subsequently called carbonate,
chloride, phosphate, silica axd sulfate solids), fora fotal
of 25 reactors, Two conirol sets were also prepared: a
no-treatment contzol set containing freshwater medivm
and 1o solids to discern Cr(VI losses by sorption, sad 2
set containing the starting fervic oxide not exposed 0
Bry. No atempt was made to ¢liminate bacteria from
the solids. Reactors were prepared in 13 ml serum bot-
tles, caped and crimped with aluminum seal. Prior to
sealing, the reactors were amended with potassium di-
chromate {115 mg/l 83 Ce(V1) and deoxygedated by
purging with N, for 20 rin in the liquid phase and 10
min in the headspace. Liguid samples wers withdrawn

after 5, 20 and 35 min of contact time and filterad
(0.2 wm) to measure residual Cr{VE in solution. Dis-
solved iron was also messured in these samples. All
reactors were then opened and solids were washed five
times with DI water, to remove water-sofuble species.
The solids were then dried, weighted and digested with
HCT sotution (40% vol.), for total Cr and Fe analysis by
atomic absorption spectroscopy.

2.5, Analytical methods

The starting ferric’ oxide was characterized using
Mbssbauer spectroscopy, measuring the % absorbed v--
wave radistion from 3 >'Ce source to the iron solids
sample [56]. Samples for Méssbauer were prepared by
fillering the iron solids onto 13 mm, 0435 micron filter.
paper and sealing between two layers of Kapton® tape
(which has very low O, permesbilify, thus retaining
apoxic conditions), Spectra were obtained after b bours
and fit with Recoil @ software. .

CrfVly was measured spectrophotometncally at
540 nm by the S-lipheny! carbazide method 110} i a
UY-Vis spectrometer Varian Cary 50. Total chromium
and iron, in solid and Liguid phase, were determined by
flame atomic absorpiion spectroscapy (AAS) n a Var-
ian Spectrad 200, Ci(lll) was estimated as the differ-
ence between total and hexavalent chronium,

2.6, Chemicaly

Al solutions were prepared in D1 water. All chemi-
cals were HPLC or ACS grade (Sigma, St. Louis, MO),
N, and No/COq (BO/20%) gases were purchased from
Adr Products, Inc.

3, Results and discussion

Fig. 1 shows the Mssbaner spectra for the amor-
phous ferric oxide used 2s the starting material that
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Fig. 1. Mobssbaner specta for erigloal feoric oxide.

was transformed by Shewanella viga BrY. The data
show a doublet (two peaks), typical for ferrihydrite. A
very broad distribution of crystal forms (atbee 'struc-
tures) is apparent in the broad peaks, reflecting a less
crysmikiné and more amorphous name of ferrthydriie.
Ferrihydrite has been used before as a model for inert
ferric oxides in PRBs 58], and has been found exten-
sively in PRB where appropriated analytical techniques
have been used {16]. Whereas ferrinydrite can adsorb
Ce(H) and Cr{V1}, it does not reduce Cr{VL) under sub-
surtace conditions (absence of light) {32].

After 45 days, ferrihydrite incubated with Bry in the
presence of high concentrations of chloride, carbonate
or phosphate changed its color to dark brown (reflecting

reduction of Fe(lTl) to Fe(l)), with larger particles ob-

served in the high-chioride treatment. Solids formed

‘with high sulfate or silica concentations werg lighter
in color, suggesting differences in the struchure of the -

microbial-produced solids.

Ferrihvdrite did not remove Cr( V1) during the corse

of the experiments, except for a gmall aouns (< 9%)
that was reversibly adsorbed. Tn order o confirm that

this removal was due to reversible adsorption, a con- '

centrated phosphate solotion was added to stmulale
Cr(V1) displacerment by ion exchange. This resulled in
the recovery of the Cr(Vi) thut had been remnoved by
sorption onto ferrihydrite (data not shown). In contrast,
a1l treatments incubated with BeY removed Cr(VI) ra-
pidly (¥ig. 2) and irreversibly, For all treatments, the
reaction took place in less than 5 min, with no further
Cr{VTy reduction observed afterwards, probably due-to
depletion of reduction capacity. Whereas BrY is cap-
able of reducing Cr{VI} directly [21,27,54] and plating

of blogenic solid samples confirmed that BrY had sue-

vived during the incubation period, the raie of microbial
reduction (;,,w---** M/ s significandly slower than that
of surface-associated or dissobved Fe(il) [34]. For ex-
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Fig. 2. (VD reduction by Felll {dissolved and associated with

bipgenic aolids) prodoced by BrY fom Fernihydrite in presence of
diffarent Joms. Frror bars repeesent one standard deviation fioem the
wean of wiplicate measurements. ) . s

ample, the fifial reduction rates depicted in Fig. 2 ave
at least one order of magnitude higher than the. above
microbial reduction rate. Therefore, Cr(VD removal
wag primarily attributed to ablotic reduction by micro-
bial-produced Fe(lT) (dissolved and solid-associated),
with subsequent precipitation of Cr{lil).
Further experiments with longer storage of the bio-
genic solids (3. 180 days) showed no significant de-

" grease in Cf(W)‘mﬁ}dml gapacity, provided ﬂl@@t'tt}é

solids be kept in anaerobic environment (daza not
shown), However, the reducing capacity of Fe{il)-bear-
ing solids is yapidly depleted upen contact with an oxi
dant, such as O, Cr{VI), or other oxidized poltutants.
This could be a concern regarding process sustainabil-
ity, Nevertheless, it should be kept in mind that redu-
eing equivalents are’ abundant in anaérobic snviron-
ments, and DIRE could use many electron donots 10
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Fig. 3 Comparisen of Cr(VI} reducton by digsolverd and solid -
ssspotated Fe(lly produced by Br¥ fom. ferdhydrite in presuns of -
diffarem: iong, Fraction. reduged. by, dissalved Feilly was estimpted
bhased onstoichiometry ond Fofll) consummplion messurements.
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“recyele” Fe(llly info Fe(l) again, to restore the raduc-
tion capacity of the solids {321,

Fig. 3 depicts the relative contribution of dissolved
iron and the biogenic Felll)- hearing solids Wowards Cr
(VT reduction. The contribution of dissolved Felt) was
estimated based on the amount of dissolved Fe(ll) con-
sumed (Table 2) and the theoretical stowhiometrie re-
quirement of 3 mol of Fe(ll} per mole of reduced Cr
VD, In all treatments, the amount of Co{VI) removad
exceedad the amount possibly reduced by the available
dissolved Felll), amd the difference was attributed to
retiuction by the biogenic Fe(Il)- bearing solids. In gen-
eral, the contibution of biogenic solids was higher than
that of dissclved Fe(il), possibly because the reducing
capacity of Fe(Il) is favored thermodynamically and ki~
netically by adsorption 1o surfaces due o generation of
an efficient electron carrier syster [7,14,481 Surface.

associated Fe(lf) can reduce priority pollutants such as
halomethanes, RDX, Cr{VI) and carbon teteachloride

{3,7,19,23]. The oxide surface that acis as support can

also serve as a catalyst by fixing the position of the tvo’

charged reactants in a suitable geomeiry for reaction. To
fact, unreacted ferrihydrite has been found to enhance

CCr(VT) reduction by Fe(ll) (71 Thus, it is tikely that

unreacted fersihydiite also contributed (ndirectly) w
C VD removal in these experiments.

The molar ratios of precipitated Cr to solid iron {Cif
Pey were caloulated (Table 2). The estimated stoichio-
metric ratios are smaller than those reported in the Tt
erature, which typically range between 0.3 and 1 10,
541, The smaller values obtained in these experiments
suggest that reactive surface sites were ot readily
available for chwomium reduction and/or fixation into
the solid phase. Based on final measured Cr/Fe ratios
{0.185 for carbonaie and 0.140 for sulfate) and the in~
iial presence of ferrihydrite in our systems, we hy-
pothesize that formation of Cesubstituted ferrihydrite
occurs as a result of chromium reduction for biogenic
solids produced in the presence of high concentrations
of sulfate and carbonate, Ce-substinuted fmmydnm has

Table 2
Comparison of biogenie solids reactivity

3

been found in Cr-reduction by green. rust (a mixed va-
lence ron oxide adca. fougerite), with & 0.16-0.22 Co/
Fe ratio [29]. This solid has a very low solubiliy, sini-
Yar o that of the Cr{ll-hydroxide precipitate.
Regarding the effect of common ions, reactors with
high carbonate concentrations were the mogt reactive,
removing 66.0 £ 2.8% of the added Cr(VI) from the
tguid phase, while all the other reactors removed about
40% {Table 2%, High concentrations of chioride, phos-
phate of silica resulted in microbial-preduced soids
with smmaller reduction capalbiilinies than these generated
in the presence of high concentrations of carbonate and
sulfate {Table 2V, BrY repares direct contact with the
iron miners! during electron wanspors (281 Phosphate
and silica likely blocked access of Br'Y to iron surfaces,
through the formation of surface complexes at the par-
tiele-water interface [12,26,40,43,47,49) These com-
pounds could block both access of BrY to solids (hin-
dering reduction) and sorpion/incorporation of Fe(li)
on the solid phase. It is more-diffioult o predivt or ex-
piain the effect of chioride. Although chloride is gener-
allv considered as a corrosion promwoter [22], which
could be condugive to enhanced electron tranafer, chlor-
ide has been reported to inhibit perchlorate reduction. by
iron surfaces F31]. Buifate also can be a corrosion pro-
moter, and s presence might have also enhanced solids
reactivity by serving as a constiuent of sulfate greem
rast. Sulfate green rust 8 less stable then carbonate
green Tust [50] but is nonetheless a powerful reductant.
This hypothesis, bowever, could not be validated be-
cause the presence of green rust wag not im’esﬁgmad
in this experiment. .
Depending on its concentration, carbonate ceuld
sither ephance or inhibit biological reduction and the
reactivity of Fe{ll)-bearing sobids. Carbonate can preci-
pitate as calcite, aragonite, or carbonate green rust i,
20,35,58), This could inhibit contzminant access 10 the
solid surface {1,30,58], and in the sase of green rust,
provide a redox-active phase [35]. Solids produced in
the presence of cerbonate presented higher reaciivity;

Biogenic solid produced with high
conventravons of*:

CrvD) wemoved from
liguid phase

Cr'Fe molar ratio®®

Total dissolved Fe(ll}
hefire conact

Taotal dissolved Felll}
affer comact

(%) with CHVE (sl with CofVIY (mg/h)
Chioride 400k 1.3 3,062 = 0.012 4455 & 442 078 & 0,48
Carbonate TR Q185 2 0,04 413+ 409 0.3 =007
Phosphate 402+ 0.2 0092 & 0,010 B4.64 420 0,08 % 003
Silicn 348220 H075 %0002 843 = 782 485 0 148
Suifle , _ A3FA LY 0.146 = 0.013 34,7+ 3.05 0.00 % 0.00

8 Gee Table ! for lon copcentzations. © . ...

¥ measnred by AAS, Inital CoVI} concentration; 63 m»;,T
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thuss, these solids were fusther analyeed by Mdssbauer
spectroscopy (dam not shown). Thiy analysiy identified
siderite (FeCOs, a Fe(ll-bearing solid), Whereas side-

rite is unlikely to account for the high reactivity of these

solids, its presence confirmed that in presence of carbo-
nate, ferrihydrite was reduced by BrY to Fe(ll)-bearing
solids.

Although Ci(VI) reduction by biologically produced
ferrous species has been repored before, ewr work
shows that the peneration and/or reactivity of such spe-
cies could be significantly influenced by presence of
different anions commonly found in groundwarey. This
infornation contributes towards delineating the role,
capabilities and limitation of facultative DIREB in pollu-
tion control. :

4., Conclusions

Results suggest that DIRB such a5 BrY could en-
hance the long-term performance of ZV1 PRBs and
contribute to abiotic vatural attenwation of CAVL)
plumes in squifer systems. The facts that the BrY is o
facultative anasrobe (Le. tolerant 10 oxygen) and can
utitize H, (8 ZVI corrosion product) as electron donor
make this strain an atwactive candidate for PRE mocu-
lation. Furthermore, Shewanell are r-stategists that are
likely to thrive and “activate” inert iron oxides mcon-
taminated aquifers under selective biostimmlated condi-
tions, using various electron donors. Nevertheless, sig-
nificant improvement in performance is untikely o be
universally achieved, and pilot smdies should be con-
ducted to evaluate process sustainability (2. bacterial
cyeling of Fe(llyFe(Ill)) and identify potential critical
fimitations associated with scale up issues, mecleding
the effect of high pH, co-contaminanis. and redox oon-
ditions. _—

Degpite the clear interest in the application of biolo-
gical processes to treat contaminated aquifers, fintle hias
heen done to assess the role of related chersical (or
abiotic) iansformation  pathways and  determing
whether combined biological and chenical wanstorma-
tion process are likely to be sufficlently sustainable un-
der field conditions to enbance the attemation of Cr
(VD) plumes. Our work shows factors such as grovnd-
water chemdstry will affect production and/or reactivity
of biogenic solids and dissolved species generated by
enzymatic activity, Carbonate-comaining media pro-
moted higher Cr{VT) termoval, although further shidies
are needed to evalzate long-term stability and ascertain
whether different processes vould promote chromate
leaching from the solid phase. Chloride, silica and

phosphate hindered biogenic sokid production and re--
suliing reactivity, possibly by blocking access to reac-
tive siley. Solids prepared in presence of high suifate
concentrations exhibited a moderate Cr{VI) removal cae
pacity. However, a complex system like this, containing
different solid phases, biological residues, dissolved
and sorbed Cr and Fe gpecles will require further stu-
dies to completely characterize the distribution of the
conptaninant after raduction.
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