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Abstraet Flow-through aquifer cofumns were oper-
aled for 12 weeks to evaluate the benefits of aerobic
biostirulation for the bioremediation of source-zone
soil contaminated with chlorobenzenes (CBs). Quan-
titative Polymerase Chain Reaction (QPCR) was used
to measure the concentration of total bacteria (168
rRNA gene) and oxygenase genes involved in the
biodegradation of aromatic compounds (i.e., toluene
dioxygenase, ring hydroxylating monaoxygenase,
naphthalene dioxygenase, phenol hydroxylase, and
biphenyl dioxygenase). Monochlorobenzene, which
is much more soluble than dichlorobenzenes, was
primarily removed by flushing, and biostimulation
showed little benefit. In contrast, dicklorobenzene
removal was primarily due to biadegradation, and the
removal efliciency was much higher in oxygen-
amended columas compared to a control column, To
our knowledge, this is the first report that oxygen
addition can enhance CB source-zone soil bioreme-
diation. Analysis by gPCR showed that whereas the
biphenyl and toluene dioxygenase biomarkers were
most abundant, increases in the concentration of the
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phenol hydroxylase gene reflected best the higher
dichlorobenzene removal due o aerobic biostimula-
lion. This suggests that guantitative molecular
microbial ecology techniques could be useful to
assess CB source-zone bioremediation performance,
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Abbreviations

CB Chlorobenzene

DCB Dichiorobenzene

DNAPL  Dense non-aqueous phase liquid

MCB Monochlorobenzene

MCL Maximum contaminant level

MNA Monitored natural attenuation

GPCR quantitative Polymerase Chain Reaction

RNA ribosomal RNA
YoC Volatile organic compounds
Introduction

Chlorobenzenes (CBs) represent a group of chemicals
that are widely used as industrial solvents and
degreasers, and are commonly encountered in the
subsurface near industrial areas where they have been
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manofactured or used (Howard 19893, CBs include
moncchiorobenzere (MCR) and the dichlorobenzene
{DCB) isomers (1,2-DCB; 1,3-DCB; and 1,4-DCB).
These compounds have low USA federal drinking
water standards (i.e., maximum contaminant levels
[MCLs] ranging from 0.075 mg 1™ for 1,4-DCB to
0.6 mg I~} for 1,2.DCB) and relatively high water
solubility, ranging from ~75 mg 1™ for 1,4-DCB o
~500 mg i~ for MCB.

Bioremediation and monitored natural attenuation
{MNA) are among the most cosl-effective approaches
to manage soil and groundwater contamination by
organic pollutants (Alvarez and Ilman 2005; McD-
ade et al, 2005). Past research shows that CBs can he
degraded by a variety of both aerobic {Adiian et al.
2000; Dermietzel and Vieth 2002; Lorbeer et al,
2002; Vogt et al. 2002, 2004; Wenderath et al. 2003)
and anaerobic bacteria (Adrian et al. 2000; Kao and
Prosser 1999; Kaschi et al. 2005; Wenderoth et al.
2003). Biodegradation generally proceeds faster aer-
obically (Wenderoth et al. 2003), patticularly in the
case ol MCB and 1,4-DCB (Dermietze! and Vieth
2002}, and oxygen availability is a common rate-
limiting factor for microbial-mediated CB transfor-
mation, Several strategies have been developed that
oxygenate the subsurface lor biostimulating serobic
mieroorganisms to metabolize CRBs, including the
addition of hydrogen peroxide (Vogt et al. 2004) and
ait sparging (Balcke et al, 2004), However, most
previous CB biodegradation resenrch and bioremedi-
ation eflorts have focused on groundwater treatment
and plume management (Dermietzel and Vieth 2002;
Lorbeer et al. 2002; Vogt et al. 2002, 2004; Wende-
toth et al. 2003) rather than on treating the source
zone, In the source zone, CBs occur as either
adsorbed to the solid phase or as densc non-aqueous
phase liquid (DNAPL) that slowly dissolve over
many years and emanate groundwater plumes. Thus,
plume-freatment technologies address the symptom
rather than the cause, and there is a need to develop
practical approaches to treat CB source-zones,

Barly bioremediation research did not focus on
direcily treating source-zones due to concerns about
the potential microbial toxicily of high contaminant
concentrations, However, recent research has shown
ihat microorganisms can increase the concentration
gradient and dissolution flux of hydrophobic pollu-
tants {Adamson et al, 2003; Cope and Hughes 2001;
Zheng et al, 2001), This has promoted the acceptance
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of source-zone bioremediation (McGuire et al. 2006),
which aims to increase the local Aux of contaminanis
from DNAPLs or solid phase into the aqueous phase
through biodegradation and the prodnction of more
soluble metabolites that can be more easily detoxified
in situ or removed by alterpative (plume manage-
ment) technologies. The potential efficacy of source-
zone bioremediation hras been recently demonstrated
under anaerobic conditions for chlorinated ethenes at
the pilot (Adamson et al. 2003; Da Silva et al. 2006:
Sleep et al. 2006) and field scales (Lendvay et al.
2003). However, there are no published reports on the
use of bioremediation to treat CB source-zones,
which provided motivation for this research.

A rigorous performance assessment of bioremedi-
ation requires documentation that contaminant
removal is due lo microbial rather than abiotic
processes such as dissolution, dilution and volatili-
zation. This is of particular importance .in aerobic
environments because of the difficulty in monitoring
end-products {e.g, CO;) and the complications
presented by quantifying contaminant loss in com-
plex media where multiple phases may be present.
Molecular microbial ecology techniques and specific
biomarkers are increasingly being used 4o obtaln
supporting evidence of bioremediation {Abraham
et al, 2005; Alfreider et al. 2002b; Baloke et al,
2004; Beller et al, 2002; Da Silva and Alvarez 2004:
Da Silva et al. 2006; Futumata et al. 2001; Wende-
roth etal. 2003), including genes coding for.
chlorocatechel - dioxygenases  (Alfreider . et al,
2002Db). Such efforts can be uvsed to establish that
specific genes associated with the degradation of
target pollutants are present, and that their numbers
are higher in the treaimen! zone compared to
background samples, Numerous catabolic biomarkers
have been used to quantify the presence of organisms
that degrade aromatic compounds (Baldwin et al,
2003; Beller et al. 2002; Suzuki et al. 2000). These
include the genes coding for toluene dioxygenase,
ring hydroxylating monooxygenase, naphthalene
dioxygenase, biphenyl dioxygenase, and phenol
hydroxylase, These biomarker assays are relatively
straightforward and powerful tools that are ideally
suited for determining the efficacy of biostimulation
within a source-zone, However, it is unknown
whether such biomarkers could be applicable for a
performance assessment of CB source-zone bioreme-
diation. Given that the aerobic degradation of
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chlorinaled benzenes is initiated by oxygenase-pro-
moted hydroxylations prior to ring cleavage, these
biomarkers represent promising candidates for further
study.

In this paper, we repori the results of a biostimu-
iation experiment 1o evaluate the efficacy of aerobic
CB sourcs-zone bioremediation, Genotypic shifis
associated with the proliferation of genes that code
for various enzymes that initiate aercbic biodegrada-
tion of aromalic compounds (e, oxygenases) were
quantified to establish candidate biomarkers for
assessment of CB source-zone bioremediation.

Materials and methods

Biostimulation experiment

Flow-through columns were designed and operated to
test the ability to enhance CB atfenuation via aerobic

- biostimulation under conditions mimicking those

present in a contaminated aquifer that is oxygen-
Hmited. The studies were performed using aquifer

- material collected from a former chemical manufac-

turing facility located in the Midwestern United States,
Environmental Visualization System software (EVS,
Version 7.92). was used to identify the highest

‘concentrations of MCB and DCE in the saturated zone
-+ source area to establish suitable locations for collection

of soil samples. Samples for the biostimulation exper-

- iment were collected using rotasonic - drilling
techniques, and were packaged in sealed containers

having minimal headspace for shipment at 4°C to Rice
University. To provide baseline characterization data
prior to biestimulation, additional sample aliquots
were shipped al 4°C to Seven Trent Laboratories in
Savannah, Georgia in laboratory-provided, method-
specific containers for chemical and geotechnical
analyses. This incloded soil samples used to charac-
terize background microbial conditions, which were
collected From a soil boring located approximately
700 m (cross-gradient} from the CB source-zone. This
background soil sample was collected from the same
stratigraphic horizon as the samples collected for the
biostimulation experiment (12-15 m below ground
surface}. The boring was located adjacent to 2 separate
mixed-waste disposal site, but chemical analysis
of the soil indicated that the horizon used for
background characterization did not contain detectable

concentrations of volatile or semi-volatile organic
compounds. The aquifer material used in these exper-
iments (both biostimulated and background samples)
uniformly consisted of fine to medium-grained sand,
with an estimated bulk density of 1.7 g mI™",
Flow-through aquifer columns were constructed
using custom made (Specialty Glass, Houston, TX)
7.6 em diameter and 15.2 ¢m long columns (total
volume 695 ml) that were packed with site soil,
Fitted caps at boifi ends were constructed to ensure
gas-tight, non-reactive conditions. 'To mimic the
in-flow of clean water from upgradient areas through
the source zone at the site, water was introduced in an
upflow mode via peristaltic pumps at a rate designed
to match the groundwater velocity at the site
(8.7 em d~1), The influent solution was a bicarbon-
ate-buffered mineral medivm with geochemistry
similar to the site groundwater, using deionized
water supplemented with the following constitvents
(in mg 1™ MgS0,7H,0 (50), FeSO,TH,O (3),
(NH4),804 (500), K,HPO, (1,750), KH,PO, (1,380),
NalCO; {500), MnSO.H,O (2), H3BO; (0.1),
CaSO.;-SH;O (0.05), leSOq,'?HgO (0.05), Nag
MoO42H,0 (0.05), H;BO3 (0.1), and CoS04:7H,0

(0.7). After a 2-week equilibration period, industrial

grade pure oxygen (100% v/v) was sparged continu-
ously into the influent reservoir providing oxygen-
saturated water (~48 mg 1™') for the duration of the

- expetiment. The influent reservoir was maintained ina
refrigerated environment to simulate the average site -

groundwalér temperature of 13-16°C, ot

A total of 8 columns underwent aerobic biosti-
mulation (i.¢., fed with oxygen-saturaled medium).
In addition to these oxygen-amended columns, a
control colamn was fed from a separate reservoir
with Ng-sparged medium (DO < 2 mg I™'} amended
with sodium azide (10 mg I™"). The azide concen-
tration used in the siudy was sublethal (Lichstein
and Soule 1943) and resulted in bacteriostatic
(rather than bactericidal) effects that decreased
aerobic respiration and biodegradation activity. The
azide-amended control column did not serve as a
sterile control; it was used o clicit decreased
biological aclivity that would oceur under oxygen-
limited conditions, which is the baseline condition at
the site. Sodium azide was sslected over other
bacterial inhibitors because it does not change the
structure and properties of the soil and because of its
affordability and safe disposal.
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The experiment was carried out over a 12-week
period (following two weeks of equilibration). During
the two-week equilibration period, deionized water
flowed through all columns without the addition of
oxygen and nutrients (for biostimulation columas) or
nilrogen and azide (for the control column). This
period served as a baseline to establish CB concen-
trations being flushed from the source zone. The
effluent end of each column was fitted with an in-line
satnple collection reservoir, and weekly aqueous
samples were collected for analysis of volatile
organic compounds (VOC) by USEPA Method
8260 at Severn Trent Laboratories (Savannak, Geor-
gia, USA). Dissolved oxygen (Oakton DO 110),
oxidation-reduction potential (Cole-Parmer), tempex-
ature, pH, and specific conductivity (Hanna HI
991301) were measured directly by insertion of
parameter-specific probes through a cap in the in-
line reservoir. At two week intervals, a biostimutated
{aerobic) column was sacrificed to obtain scil sam-
ples for posterior chemical and molecular analysis.
The control column was sacrificed after 12 weeks.
Colunmn soil samples were collected in accordance
with USEPA Method 3035 and shipped at 4°C to

Seven Trent Laboratories (Savannah, Georgia, USA) :

for VOC analysis by USEPA Method 8260. A
composite soll sample was also coliected for molec-

ular analysis performed at Rice University as .

described below, - - .

-+ DNA extraction

DNA was extracted from soil samples using MoBio
power Soil DNA isolation kit (Carlsbad, CA, USA)
according to manufacivrer protocol. A bead-beating
device (Model Mini Beadbeater-8; Biospec, Bartles-
ville, OK, USA} was utilized for cell lysis, The
recovered DNA was collected in a 1.5-m] Bppendorf
vial and stored in a freczer (Isotemp@ Basic, Fischer
Scientific, Rockville, MD, USA) at —75°C. The
concentration and purity of the DNA was measured
based on the wavelength absorbance ratio (absorbance
of 260 nm for DNA and 280 nm for protein) Asee/
Aapp using a spectrophotometer (Amersham Biosci-
ences, Model Ultraspec 2100 Pro, Piscataway, NI,
USA). Each sampled was spiked with a 2-ul aliquot of
bacteriophage A DNA 500 bp (Sigma-Aldrich, St
Louis, MO, USA) prior to DNA extraction (o serve as
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an internal slandard for the determination of DNA
effictency recovery. When recovery was lower than
100%, gene copy numbers were normalized to the
fraction recovered.

Real-time guantitative PCR (qPCR)

gPCR was used to quantify catabolic genes coding
for toluene dioxygenase, naphthalene dioxygenase,
ring hydroxylating monooxygenase, phenol hydrox-
ylase, and biphenyl dioxygerase using the primers
TOD, NAH, RMO, PHE, and BPH3, respectively,
designed by Baldwin et al, (2003) (Table 1), These
genes were selected as biomarkers because (1) lo
date, no gPCR primers have been designed to
quantify CB degradation genes, and the chloroben-
zene dioxygenase sequences in the NCBI database
are highly similar and often indiscernible from the
loluene and biphenyl dioxygenase genes. I faci,
previous studies have demeonstrated " that - genes
involved in the degradation of CBs are evolution-
arily linked to toluene/benzene and ' biphenyl
dioxygenases (Beil et al. 1998; Van der Meeér et al,
1998) and utilize similar metabolic routes (Gibson
and Pargles 2000); (if) the targeted oxygenases are

- know {0 have broad substrate specificity and -attack a.

wide variety of aromatic compounds (Wackett and
Hershberger 2001) and (i) these primers target
conserved region of the gene, permitting the detec- .

- tion of specific aromatic catabolic genotypes without

excluding related but uncharacterized genes (Baid- -
win et al, 2003).

All primers and probes were obtained from
Integrated DNA  Technologies (Coralville, IA,
USA). PCR mixtures contained 1x Tagman PCR
Master Mix or SYBR GREEN (Applied Biosystems,
Foster City, CA, USA); 500 nM forward and reverse
primers, 250 nM of the probe (for reactions using
Tagman) and sterile DNAase-free water to make up
a final volume of 25 ul. PCR reactions were
performed using a Sequence Detector (Mode! ABI
7500, Applied Biosystems, Foster City, CA, USA)
with the following temperature conditions: 50°C for
two min, followed by 95°C for 10 min and 40 cycles
at 95°C for 155, and 60°C for one min. The
genomic DNA sequences of various reference strains
wete ttilized to prepare calibration curves for the
targeted oxygenase genes. Pseudomonas putida Fl
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Table 1 Primers and probe sequences vsed in this study

Primer Targets gene coding for Sequence Probe

PHE-F Phenol hydroxylase® 5.GTGCTGACIC/IGIAACMCTG(CITITGTTC-¥ SYBR-Green

PHE-R 3 CGCCAGAACCA(CTITT(A/G)TC-

TOD-F Toluene dloxygenase®  5-ACCCATGA(A/GYGA(CITICTGTACC-¥ SYBR-Green

TOD-R §-CTTCGGTCA/OAGTAGCTOGTS-3

NAH-F Naphthalene F-CAAAA(MGICACCTGATT(CITATGG-3 SYBR-Green

NAH-R dioxygenase® 5-A(CIT)A/CICGA/G)G(CIG)GACTTCTTICAA- ¥

RMO-F Ring hydroxylating S-TCTC(AICIGIACCAT(CITICAGACIA/C/GGACG-Y SYBR-Green

RMO-R monooxygenase STT{G/TITCGATGAT(C/GITIAC(AIG) TCCCA-Y

BPH3.F Bipheny! S-CCGOGAGAACGGCAGGATC-Y SYBR-Green

BPH3-R dioxygenase® S“TGCTCCACTOCOAACTTC-Y

BACT1369F Bacterla SNCGOTGAATACGTTCYCGG-3 FAM-5'-CTTGTACACACCGC

PROKI492R (165 iRNA gene)”  §1.0GOCAGAACCACITITIA/GITC-Y CCGTC-3-BHQ
5-ACGCCACGCOGGATC-Y TET-5-ACCTGTGGCATTTGT

A Bacteriophage A°

Y-AGAGACACGAAACGCCGTTC-Y

GCTGCCG-E-TAMRA

* Primers designed by Baldwin et al. (2003)
" Primers and probe devetoped by Suzuki et al, (2000)
® Primers and probe as in Befler et al, (2002)

was used for toluene dioxygenase, Pseudomonas
putida G7 for naphthalene dioxygenase, P. pseud-
oclealigenes  KF707 for biphenyl dioxygenase,
R. picketti PKO1 for ring hydroxylating monooxy-
. genase, and Pseudontonas pmida CF600 for phenol
hydroxylase, Dilutions (10'-10% gene copies pl™ ')
. were prepared for all calibration curves, vielding /*
values = (.99,

Gene copies in each of the dilwtions were _

_estjmated based on the following equation:
Gene copies ml™'
= [ug DNA ™' x [9.1257 x 10" bp I DNA™]
x [1genome6.18 x 106bp~"]
x [#+of gene copies genome ™'

This approach assumes that the approximate size
of the bacterial genome used as the standard in the
ealibration curves was 6.18 x 10% base pairs (bp)
(with approximately 9.12576 x 10" bp pg™' of
DNA, equivalent to the size of the P. putida genome
{hip:/fwww.genomesontine,org), and that there are
seven gene copies for 165 rRNA gene per genome (1
copy for oxygenases) (htp/fwww.rendb.ememsu.
edu), The detection limits were on the order of [0?
copy numbers g-soil ™! for oxygenase genes and 10°
copy numbers g-soil~! for 165 rRNA gene,

Resulfs and discussion

Source-zone bioremediation

Aetobic biostimujation was tested as a method for:

enhancing the source-zone attenuation of a site

contaminated with MCB and DCBs. A baseling,

c!mracterlzauon of unamended, homogenized soil

mdlcazed an average initial concentration of 420 mg -
' MCB, 2,000 mg kg™* 1,2-DCB, 470 mg kg~

‘13‘DCB and 1,700 mg kg™' 1,4-DCB. These con-

cenlrations are consistent with historical high
concenirations that have been measured at the sito.
MCB concentrations in column effluents were
stable or increased slightly over the 2-week equili-
bration period, and decreased exponentially during
the treatment stage (Fig. 1). The decrease in effluent
MCB coneentration was slightly faster in the biosti-
mulated columms, from an initial value of about
40 mg1™' to below detection (<0.5 mg ") nfter
6 weeks of oxygen addition, cornpared to 9 weeks for
the controf column. The finai MCB removal effi-
ciency from the soil was greater than 99% for both
biostimulated and control columns (Fig. 2), indicat-
ing that dissolution and advective flushing of this
relatively soluble compound (500 mg ™" water sol-
ubility) was an important removal mechanism,
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In contrast to MCB, effluent concentrations of the
DCB isermers remained refatively constant through-
out the test, with the total DCB concentration ranging
from 80 to 160 mg )~ (Fig. 1). Yet, soil concentra-
tions data provided evidence of DCB mass removal
(Fig. 2). This suggests the presence of an organic
phase (characteristic of source-zone soil), which was
not depleted and continued to dissolve and sustain
relatively high effluent DCB concentrations

@ Springer

The overall MCB mass reduction from the source-
zone soil for the 12-week test pertod was greater than
99% in the biostimulated columns. A high degree of
MCB removal was also observed in the control column
(96%), consistent with effluent sampling data. DCB
total mass removal in biostimulated columus was also
high. At the end of the 12-week oxygenation pericd,
total DCB mass removal was 89% for 1,2-DCB; 83%
for 1,3-DCB; and 90% for 1,4-DCB. These removal
efficiencies were much higher than those observed in
the control column (34, 29 and 36% respectively)
(Fig. 2), demonstrating the benefits of acrobic biosti-
mulation for this less-soluble class of compounds.
Oxygen consumption observed in the bostimulated
columns (from an influent dissolved oxygen concen-
tration of 48.6 mgi~' to an effluent value of
approximately 3 mg I™') corroborates the finding
aerabic biostimulation contributed to enhanced mass
removal. Based on the observed mass removal over
12 weeks, the biostimulation enhancement facior
(relative to the control) was 2.6-fold for 1,2-DCB,
2,9-fold for 1,3-DCB and 2.5-fold for 1,4-DCB.

Molecular analyses

The total bacteria population (measured by gPCR as
165-rRNA gene copies) was one order of magnitude -
higher in the ‘source-zone sample than in the non:
comtaminated (background) soil, and increased by an
additional order of magnitude following aerobic
biostimulation (12 weeks) to about 107-108 copies
g-soil ™! (Fig. 3). A comparisen of background versus
source-zone samples prior to biostimulation suggests
that the presence of CBs promoted significant growth
(7 < 0.05) of bacteria harboring bipheny! dioxygen-
ase, toluene dioxygenase and phenol hydroxylase
genes. These genes also experienced an increase
following aerobic biostimulation, but only the phenol
hydroxylase gene was significantly enriched
(7 < 0.05) (Fig. 3). The bipheayl and toluene diox-
ygenase genes were already present at relatively high
concentrations in the background soil (~ 10* copies
g-soil ™h, making them less sensitive biomarkers with
respect lo monitoring changes following biostimula-
tion. The possibility that their initial abundance was
due to the proximity of the background sample
location to a fandfill for mixed waste (which might
have promoted the growth of such genotypes) could
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{p < 0.05) relative to both background and initinl conditions
{1 = 0). Error bars depict the standard deviation from the mean
of uiplicate measurements, The inhibited control column
{azide-amended, oxygen-free) was not considered a sterile
control

not be ruled out. Nonetheless, naphthalene dioxy-
genase and ring hydroxylating monooxygenase genes
were not detected in either the background or source-
zone samples before or after biostimulation, indicat-
ing that ‘these were not appropriate biomarkers for
this soil and contaminant profile.

DNA-based catabolic biomarkers such as those
used in “this work cannot provide unequivocal
evidence of * biodegradation activity because the
presence of a gene does not guarantee its expression.
Thus, instantanecus activity can be better inferred by
mRNA (gene expression) rather than DNA (gene
presence) analysis. Nevertheless, DNA gene copy
numbers should be tamporally quite responsive to
biodegradation activity because bacterial growth
supported by utilization of the target pollutant doring
bioremediation increases the number of pertinent
catabolic genes relative to background fevels, In
addition, DNA analysis is generally more sensitive
and easier to perform than mRNA analysis, primarily
becanse mRNA is relatively unstable and ils quanti-
fieation is subject to variable reverse lanscriptase
efficiency and lower gPCR recovery.

Although an unequivocal eticlogy between biphe-
nyl or toluene dioxygenase and CB degradation was

not established, the notion that these enzymes played a
role in CB biodegradation is supported by circumstan-
tial evidence from previous studies. Specifically,
regarding biphenyl dioxygenase, (i) bacteria harboring
this enzyme have been reporied to abound at sites
contaminated with CBs {Abraham et al. 2005), and {ii)
biphenyl dioxygenase is known to have a relaxed
substrate specificity and attack chlorobiphenyls (htp:/
www.brenda.uni-koeln.de), which are stracturs] ana-
logues of CBs. Therefore, hiphenyl dioxygenase might
either initiate the degradation of CBs or participate in
the degradation of one or more of its byproducts. A
similar argument can be postulated for toluene dioxy-
genase, because its gene is evolutionarily linked to
biphenyl and chlorobenzene dioxygenase. In fact, the
toluene dioxygenase gene sequence is difficult to dis-
cern from that of the chlorobenzene dioxygenase gene
(Beil et al, 1998; Van der Meer et al, 1998).

The significant enrichment of the phenot hydrox-
ylase gene following aerobic biostimulation suggests
two possibilities: (a) phenols or chlorophenals, which
are subskwates for phenol hydroxylases, were pro-
duced following an initial attack on the CB molecule
by another oxygenase, and some of these phenolics
were subsequently degraded by organisms harboring
pheno! hydroxylase; or (b) phenol hydroxylase cat-
alyzed both the first and second hydroxylation of the
aromalic ring prior to oxidative cleavage. Regardless
of whether the participation of organisms harboring .
phenol hydroxylase was direct or commensal, ‘this
biomarker was the most sensitive indicator of CB
biodegradation in this work. This suggests the
potential value of this biomarker {as well as those
for biphenyl and toluene dioxygenases) for assess-
ment of CB bioremediation potential,

Conclusion

This resenrch demonstrates the potential efficacy of
aerobic biostimulation to treat CB source-zones, and
that quantification of specific catabotic DNA biomark-
ers can provide valuable insight as one of several
converging lines to detmonstrate bioremediation. Since
the universal applicability of the oxygenase biomark-
ers tested in this work is unknown, further tests with
samples [rom other contaminated sites are recom-
mended to ascertain their reliability and evaluate their
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broad applicability as forensic tools to assess CB
source-zone bioremediation performance.
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