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ABSTRACT: Changes in atmospheric CO2 concentrations, temperature,
and precipitation affect plant growth and evapotranspiration. However, the
interactive effects of these factors are relatively unexplored, and it is
important to consider their combined effects at geographic and temporal
scales that are relevant to policymaking. Accordingly, we estimate how
climate change would affect water requirements for irrigated corn ethanol
production in key regions of the U.S. over a 40 year horizon. We used the
geographic-information-system-based environmental policy integrated
climate (GEPIC) model, coupled with temperature and precipitation
predictions from five different general circulation models and atmospheric
CO2 concentrations from the Special Report on Emissions Scenarios A2
emission scenario of the Intergovernmental Panel on Climate Change, to
estimate changes in water requirements and yields for corn ethanol.
Simulations infer that climate change would increase the evaporative water consumption of the 15 billion gallons per year of corn
ethanol needed to comply with the Energy Independency and Security Act by 10%, from 94 to 102 trillion liters/year (tly), and
the irrigation water consumption by 19%, from 10.22 to 12.18 tly. Furthermore, on average, irrigation rates would increase by 9%,
while corn yields would decrease by 7%, even when the projected increased irrigation requirements were met. In the irrigation-
intensive High Plains, this implies increased pressure for the stressed Ogallala Aquifer, which provides water to seven states and
irrigates one-fourth of the grain produced in the U.S. In the Corn Belt and Great Lakes region, where more rainfall is projected,
higher water requirements could be related to less frequent rainfall, suggesting a need for additional water catchment capacity.
The projected increases in water intensity (i.e., the liters of water required during feedstock cultivation to produce 1 L of corn
ethanol) because of climate change highlight the need to re-evaluate the corn ethanol elements of the Renewable Fuel Standard.

■ INTRODUCTION

Fuel ethanol production in the U.S. is rapidly increasing after
the adoption of the Energy Independence and Security Act
(EISA) of 2007.1 By 2022, 136 billion liters per year (bly) [36
billion gallons per year (bgy)] of biomass-derived fuel will be
blended with conventional motor fuels in the U.S. From those,
up to 57 bly (15 bgy) will be derived from corn. In 2012, the
U.S. experienced the hottest July and most severe drought on
record in 50 years, resulting in a 12% decrease in corn
production.2,3 This crop shortfall underscores the vulnerability
of feedstock-specific mandated fuel targets to extreme weather
conditions that could become more frequent and of higher
intensity as a result of long-term climate change.
The interdependence between energy production and water

resources has been emphasized in recent studies.4−12 When

reporting water use, both evapotranspiration (ET) and
withdrawal estimates are relevant. ET affects the water supply,
because more ET translates into less runoff and less local
recharge, while withdrawals relate to water demand. A
combination of larger ET (temporal reduction of supply) and
larger irrigation (more demand) can result in a less sustainable
situation. In comparison to other energy sources, biofuels have
large water requirements. Those are associated with feedstock
cultivation.8 For example, corn ethanol might require about

Received: January 28, 2013
Revised: April 5, 2013
Accepted: May 8, 2013
Published: May 23, 2013

Article

pubs.acs.org/est

© 2013 American Chemical Society 6030 dx.doi.org/10.1021/es400435n | Environ. Sci. Technol. 2013, 47, 6030−6037

pubs.acs.org/est


1600 L of ET water (lw) per liter of ethanol (le), while 1 L of
gasoline requires only about 3 L.4,8

When irrigated, corn ethanol uses between 350 and 1400 L
of irrigation water per liter of ethanol, depending upon where it
is grown. If 20% of the 118 million metric tonnes of corn (4
billion bushels or 44% of the annual production) used to
produce 45 bly (12 bgy) of ethanol in 2011 continues to be
irrigated at a weighted average of 800 lw/le,13 it would require 7
trillion liters of irrigation water/year (tly). Currently, this
represents only 4.4% of all irrigation withdrawals in the U.S.
(corn is primarily grown in the rain-abundant Midwest, whereas
the irrigation-intensive Western states cultivate mainly other
crops) and 1.5% of all national water withdrawals.14−16

Biofuel crops are vulnerable to droughts (i.e., termporary
water scarcity) and to long-term climate-induced water stress.
Consequently, a sustainable biofuel policy should consider how
climate change would alter both water supply and demand and,
in turn, how related changes in water availability will impact the
production of biofuel crops.
Different aspects of global climate change (e.g., CO2

concentrations in air, temperature, and precipitation) are
known to affect ET, irrigation demand, and crop yields,17−21

but the combined effects of these variables are relatively
unexplored at the scale required for national policy decision-
making. The effects of climate change on crop productivity and
plant water demand and the hydrologic cycle have been
addressed to some extent before.17−20,22,23 However, few
studies if any considered the effects of climate change on
both crop productivity and water use as proposed here.1,23 We
consider these effects at temporal and spatial scales and
resolutions that are relevant to U.S. bioenergy policy and that
enable more accurate modeling of plant physiology. Specifically,
we consider plant response to relevant environmental factors
and generate geographically distributed information on corn
yields, ET, and irrigation requirements under present
conditions and on a 40 year horizon. In doing so, we discern
specific challenges of the EISA of 2007, which expanded the
Renewable Fuel Standard (RFS).
The water intensity4 denotes here the liters of water required

during feedstock cultivation to produce 1 L of corn ethanol
(lw/le), thus recognizing that the agricultural stage of the fuel
ethanol life cycle exerts a significantly higher water demand
than fuel processing and use.4−12 Water requirements are
estimated per liter of biofuel rather than per unit area to
facilitate extrapolation to biofuel volumetric production targets.
We make a distinction between irrigation water intensity (IWI),
which is based on irrigation water estimates, and evaporative
water intensity (EWI), which is based on plant ET estimates.
The later affects water supply, because the more water that is
evapotranspired, the less it will replenish the supply, while the
former relates to water demand.
Simulations were run using geographic information system

(GIS)-based environmental policy integrated climate
(GEPIC),24 a geographically distributed agronomic model,
thus enabling consideration of spatial heterogeneity of
environmental factors through the use of distributed data
sets. A daily time step as a basis for calculations incorporates
the effects of daily weather variability and its effects on plant
physiology throughout all growing phases. To account for
climate modeling uncertainty, we run GEPIC with different
temperature and precipitation data sets. To account for climate
interannual variability, simulated water use and crop
productivity were averaged over a 10 year period. We first

construct a scenario based on recorded climate data for 1995−
2004 (baseline). This is compared to simulations for the period
2050−2059 (future scenario). Through this approach, we infer
how water requirements in relation to corn-irrigated agriculture
for ethanol production will evolve as a result of climate change
and, thus, fill a critical knowledge gap for formulating
sustainable biofuel and water resources policy. We acknowl-
edge, however, that the expansion of irrigation will only take
place if commercial, legal, and economic circumstances warrant
it. The evaluation of these non-environmental factors is a good
subject for future inquiry.

■ METHODOLOGY
General Modeling Approach. GEPIC23−25 is based on

the environmental policy integrated climate (EPIC) model,13,26

a United States Department of Agriculture (USDA) agronomic
model. The reliability of EPIC at the field and regional scale has
been demonstrated by more than 100 studies, including
simulations of corn cultivation in the U.S.A.23−30 Using
GEPIC, we combine the power of EPIC to simulate the effects
of environmental inputs on each phenological phase of
development, with the power of distributed modeling.
The region of interest (continental U.S.) is divided in a 0.5

arc-degrees (about 55 km at the equator) grid, and GEPIC is
run independently in each cell of the grid (assuming
homogeneous conditions). Atmospheric CO2 concentrations
were set to 369 ppmv in the baseline period (1995−2004) and
532 ppmv in the future period (2050−2059) according the
International Panel on Climate Change (IPCC) Special Report
on Emissions Scenarios (SRES) A2 emission scenario, which is
characterized by a steady population increase until 2050 and a
high regional heterogeneity in economic development.28 Five
climate data sets are used to account for climate modeling
uncertainty. These data sets are described in Table S1 of the
Supporting Information, corresponding to simulations by five
different general circulation models (GCMs) (CGCM, CSIRO,
ECham, Hadley, and PCM), and downscaled using MOD-
AWEC.29 The five-model mean and coefficient of variation
(CV) (i.e., standard deviation divided by the mean) are
calculated at each cell for each output variable. The CVs
indicate deviations between estimates with the five different
climate data sets and are taken in this study as a measure of
agreement (the lower the CV, the higher the agreement). Final
data analysis is performed with R statistical packages, version
2.15.0 (64-bit).
The above considerations address input data uncertainty

rather than model uncertainty. The GEPIC model was selected
because of the history of successful application of its core model
EPIC, which has been developed, calibrated, and applied in the
U.S. and elsewhere for studies in multiple crops and locations
over 30 years.23−30,32

Management interventions (irrigation, fertilizers, and pesti-
cides) are assumed to be infinitely available in our simulations
and are applied on demand to eliminate any plant stress caused
by water or nutrient scarcity and potential pests. Infinite
availability means plant growth will not be limited by such
factors, which helps discern how climate change would affect
irrigation water intensity. Planting and harvesting seasons are
timed through a feedback process aimed at optimizing
productivity.30 ET is calculated using a modified Hargreaves
equation31 that closely matches predictions by the Penman−
Monteith equation, which incorporates the effects of CO2 on
ET.32 Model equations and detailed information on input
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variables are described in detail in Table S1 of the Supporting
Information. We focused on the 10 states that contribute to
84% of U.S. corn production (Table S2 of the Supporting
Information), grouped into three USDA farm regions:33

Northern Plains (South Dakota, Nebraska, and Kansas), Corn
Belt (Iowa, Illinois, Missouri, Indiana, and Ohio), and Great
Lakes (Minnesota and Wisconsin) states.
Metrics Generated in This Study. High-resolution spatial

distributions of three output variables generated with the model
are relevant for this study: grain yield (tonne/ha), ET (mm),
and irrigation (mm). These output variables are used to
calculate the water intensities of biofuels (EWI and IWI,
measured as lw/le) as follows: The EWI is estimated by
dividing ET (lw/ha) by ethanol yields per area (le/ha), which
are a combination of crop yield (tonne/ha) and an average
corn-to-ethanol conversion rate of 387 (le/tonne).34 The IWI
(lw/le) is estimated by dividing irrigation rates (lw/ha) by
ethanol yields per area (le/ha). Subsequently, differences (Δ)
in intensities between the baseline and the future estimates are
calculated. Positive changes in water intensity (shown in red)
indicate that more water is needed to produce a unit volume of
ethanol. Conversely, negative changes (shown in blue) indicate
less water is needed to produce a unit of ethanol.
Model Evaluation. We evaluate model accuracy, bias,

reliability, and efficiency by comparing simulated and recorded
distributed data sets of yields. Although this study focuses on
irrigated corn, total yields (from irrigated + rain-fed acreage)
were simulated for validation purposes, because independent
distributed (grid) data are only available for total yields.35

Additionally, state-aggregated simulated irrigated yields were
compared to USDA state data for the 2000−2005 period.8,14

We also compared state-aggregated simulated irrigation rates
with USDA state data for the same period,14 as well as the 10-
states aggregated ET estimated in this analysis with two
national means obtained from other studies.36,45 Irrigation
efficiency factors are not reported in the USDA irrigation data
but generally range from 60 to 95%.38 We used an average
irrigation efficiency of 73% as a surrogate factor in our
simulations based on the best published data available.4,39 Note
that recorded irrigation values include all uses of irrigation (e.g.,
salt leaching or fertilizer application), whereas irrigation
estimated by the model refers exclusively to the physiological
water needs of the plant. Finally, it is important to recognize
that the decision to irrigate is influenced by legal (e.g., state-
specific water rights) and economic constrains, which are not
considered by the model. These factors represent a hurdle to
irrigation data validation and interpretation of simulated results.
Model accuracy was tested by examining cell−cell absolute

relative error (AbsRE) with
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where Ysimc
is the simulated yield in cell c in tonne/ha and Yobsc

is the observed yield in cell c in tonne/ha. High accuracy levels
(5−7%) can be achieved with EPIC (single cell model), where
model error is dominated by conceptual and parameter
uncertainty.40 In contrast, 20−30% accuracy levels are the
acceptable standard in regional studies with APEX24,41 (a
watershed scale version of EPIC), where model error is
dominated by data uncertainty. Such uncertainty is for the most

part irreducible and is determined by the quality of available
information.24,25,41

Model bias (systematic error: under- or overprediction) was
evaluated quantitatively with the mean of relative errors (mRE)
calculated with

=
∑
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c
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where REc is the relative error in cell c as calculated with eq 1
and nc is the total number of cells. A negative value of mRE
indicates underestimation, whereas a positive value indicates
overestimation.
Model reliability (Rel), defined as the probability to produce

accurate results, corresponds to the proportion of sites that
produce an absolute error below 30%. It was calculated as

=
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where the number of cells with |RE| < 30% is divided by the
total number of cells nc.
Model efficiency was evaluated quantitatively with the Nash−

Sutcliffe (NS) model efficiency coefficient.42,43 The NS
coefficient is used in distributed modeling because it evaluates
whether a distributed model gives a better estimation of data
spatial variability than the mean of the observed data set. It is
calculated as
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where Y̅obsc is the mean of the observed yields. In eq 4, the
nominator represents residual variance (simulated − observed)
and the denominator represents data variance (observed −
observed mean). NS efficiencies can range from −∞ to 1. An
efficiency of 0 (NS = 0) indicates that the model predictions are
as accurate as the mean of the observed data. An efficiency of 1
(NS = 1) indicates that the model variance is equal to the data
variance and identifies the model as a good predictor of
regional variability, whereas efficiency less than zero indicates
that the model is not a better predictor of the regional
variability than the observed mean.27,43

Uncertainty Considerations. Despite a long process of
input data error reduction,47 an absolute relative error (AbsRE)
greater than the 30%, which is the threshold that is commonly
accepted in regional studies,41 prevailed in 18% of the cells
within the major growing regions (Figure 1). Nevertheless,
about one-half of the remaining cells had a relatively low AbsRE
(<10%). The correlation between GEPIC modeling uncertainty
and low cultivated area has been previously demonstrated30 and
is related to irreducible data uncertainty.
The model underpredicts baseline corn total (irrigated +

rain-fed) yields on average by 6%, as suggested by a mean
relative error of −6.25% (see Table S3 of the Supporting
Information). The reliability evaluation shows that the model is
a good predictor in about 70% of the cells in the major corn-
growing regions (see Table S3 of the Supporting Information).
The NS model efficiency coefficient, which indicates whether a
distributed model gives a better estimation of data spatial
variability than the mean of the observed data set, was 0.59 and
positive (see Table S3 of the Supporting Information). Thus,
the use of this distributed modeling is useful in representing the
regional diversity of the simulated system.
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On the other hand, simulated irrigated yields for baseline
conditions (Figure 2) range from 7 to 13 tonnes/ha, with a 10
state simulated irrigated corn yield average of 10.7 tonnes/ha
(Table 1). This compares to an observed national average of 11
tonnes/ha, a 2% deviation, for the simulated period (see Table
S4 of the Supporting Information). The irrigated yield is
overestimated in Illinois (2%), Iowa (3%), Indiana (4%),
Missouri (14%), and Ohio (18%). The yield is underestimated
in Kansas (7%), South Dakota (9%), Minnesota (10%),
Wisconsin (13%), and Nebraska (13%) (see Table S4 of the
Supporting Information).
Simulated baseline irrigation rates in the study area range

from 100 to 600 mm (Figure 2). The model underestimates
irrigation rates by 1% on average (267 compared to 265 mm
recorded values) (see Table S4 of the Supporting Information).
Irrigation rates are overestimated for Minnesota by 5%,
Wisconsin by 11%, and Nebraska by 12%. Relatively large
underestimation occurred for some states (Kansas by 24% and
Ohio by 47%), while large overestimation resulted for others
(Iowa by 34%, Illinois by 41%, Missouri by 61%, and Indiana by
67%) (see Table S4 of the Supporting Information). Such
discrepancies can be attributed to the uncertainties in irrigation
efficiencies and irrigation reporting described above.
Baseline ET values range from 500 to 850 mm (Figure 2).

While there are no recorded data on ET at the resolution used
for this evaluation, the simulated 10 state mean EWI of 1648
lw/le (Table 1) compares to a reported value for the period
1997−2003, corresponding to the U.S. capital region of 1262
lw/le36 and to a national mean obtained for an undefined
period of 1390 lw/le in another study.45

The average CV among the five-model future estimates was
0.06 for yield, 0.02 for ET rates, and 0.11 for irrigation rates
(see Table S5 of the Supporting Information), meaning that the

agreement between projections obtained with the five different
climate data sets is higher for yield and ET than for irrigation
estimates (Figure 3). This occurs because the purpose of

Figure 1.Model error for (a) corn yield (%) and (b) planted corn area
(1000 ha). The major growing states that constitute 84% of national
production (i.e., Iowa, Illinois, Nebraska, Minnesota, Indiana, Ohio,
South Dakota, Wisconsin, and Missouri) are outlined.

Figure 2. Baseline (1995−2004 average) estimations of yield, ET,
irrigation requirements, EWI, and IWI.
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irrigation in the model is to compensate for insufficient
precipitation to maximize yields. Thus, while irrigation
estimates are greatly affected by precipitation and variability
in precipitation projections by the different GCMs is high29,46

(thus inducing high variability in irrigation rate estimates), yield
and ET rate estimates are affected by the total amount of water
provided by both irrigation and precipitation, which vary less
because irrigation in the simulations automatically compensates
for low precipitation.

■ RESULTS AND DISCUSSION

Projected Climate-Induced Changes from Baseline.
The model projects increase in both ET and irrigation water
intensity throughout many areas of corn-growing regions as a

result of climate change (Figure 4). The overall ET intensity to
comply with the 15 bgy of corn ethanol stipulated by EISA
would increase by 10%, from 94 to 102 tly based on an
increased EWI from 1648 to 1802 lw/le (Table 1). The 10%
increase in EWI is the result of a combination of a moderate
(1%) average ET rate increase and an average yield reduction of
7% (Table 1). The largest ET rate increases are found in Illinois
(5%), Indiana (4%), Ohio (4%), and Wisconsin (4%), while
other states might experience small decreases, such as Missouri
(2%), South Dakota (2%), and Nebraska (1%) (Table 1). ET
generally increases with air temperature, water availability, and
length of the growing season. The relatively small simulated ET
increases, despite unlimited irrigation and higher temperatures,
could be explained by a shortened growing season. This could

Table 1. State-Aggregated Model Estimates of Baseline (Subscript B), Future (Subscript F), and Changes (Δ) in Irrigation (I),
ET, Corn Yield (Y), Evaporative Water Intensity (EWI), and Irrigated Water Intensity (IWI)a

state
ETB
(mm)

ETF
(mm)

ΔET
(%)

IB
(mm)

IF
(mm)

ΔI
(%)

YB
(tonne/ha)

YF
(tonne/ha)

ΔY
(%)

EWIB
(lw/le)

EWIF
(lw/le)

ΔEWI
(%)

IWIB
(lw/le)

IWIF
(lw/le)

ΔIWI
(%)

Iowa 658 682 3 204 260 28 11 10 −10 1537 1769 15 477 675 42
Illinois 698 727 5 259 267 3 11 10 −9 1610 1854 15 596 681 14
Nebraska 648 641 −1 321 341 6 10 9 −9 1655 1804 9 830 964 16
Minnesota 598 614 3 192 219 14 10 9 −5 1617 1742 8 519 623 20
Indiana 694 724 4 253 262 3 11 10 −7 1624 1813 12 593 656 11
Ohio 689 709 4 249 244 −2 11 10 −3 1680 1787 7 607 612 1
South Dakota 617 605 −2 326 333 2 10 9 −6 1644 1705 4 871 940 8
Wisconsin 590 618 4 190 203 6 9 9 −5 1648 1787 10 534 582 9
Missouri 734 738 1 295 303 3 11 10 −9 1680 1855 10 674 762 13
Kansas 704 689 −2 323 360 11 10 9 −10 1748 1900 9 808 1000 24
all 658 668 1 267 286 7 10 10 −7 1648 1802 10 674 775 15

aStates are ordered from largest to smaller production. Nebraska and Kansas account for 62% of the total irrigated corn production.

Figure 3. Future (2050s average) mean and CV for corn yield, ET, and irrigation demand simulations with five different climate interpretations
(projections by five different GCMs) of the SRES A2 emission scenario.
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also explain corn yield reductions of 7% on average (Table 1);
higher temperatures can also accelerate plant development,

producing smaller plants with a shorter reproductive phase,
thus contributing to lower grain yields.18,48−50 The reduction in
yield would be experienced in all states considered (Figure 4).
The largest corn yield reductions are predicted for Iowa (10%),
Kansas (10%), Illinois (9%), Nebraska (9%), Missouri (9%),
and Indiana (7%), and the smallest corn yield reductions are
predicted for Ohio (3%) (Table 1). This suggests that the
detrimental effects of higher temperatures on crop growth are
generally more influential than the fertilizing effects of
increased atmospheric CO2 concentrations.
Simulations indicate that irrigation rates would increase by

9% on average (Table 1). The largest average increases in
irrigation rates are expected in the main corn-growing states,
especially in Iowa (27%), Minnesota (16%), Nebraska (10%),
Kansas (10%), and South Dakota (9%) (Table 1). Larger
increases (up to 60%) could occur in parts of those states
(Figure 4). The projected higher irrigation rates can be
explained by the higher ambient temperature in combination
with unfavorable (in terms of amount and timing) precipitation
occurrence, although it should be recognized that precipitation
patterns predicted by GCMs are highly uncertain. The
combined average increased irrigation rate of 9% and decreased
corn yields of 7% translate into an average IWI increment of
19% (Table 1). The largest increase in IWI was projected for
Iowa (42%), Kansas (24%), and Minnesota (20%), and the
smallest increase in IWI was projected for Ohio (1%) (Table
1). The expected changes in irrigation rates and IWI to produce
1 unit of biofuel correspond to changes as a result of
physiological acclimation only.
Of the states evaluated in this study, Nebraska and Kansas

are where the largest irrigated corn acreage currently occurs and
where the largest irrigation rates are currently applied (see
Table S2 of the Supporting Information). Less precipitation
and more ET driven by the higher temperatures projected for
these regions mean less recharge of the water supply. This
study projects a 10% increase in irrigation water demand for
corn in both states (Table 1). Currently, irrigation water in this
area is obtained primarily from the Ogallala Aquifer, which
provides water to seven states and irrigates one-fourth of the
grain produced in the U.S.50 The Ogallala Aquifer is currently
used at a faster rate than it is recharged, and a significant decline
in the water table (by more than 100 ft in some areas)51 is
observed in many sites, thus increasing the costs of pumping
water.33,50 Surprisingly, these simulations project a reduction in
corn yield (9%), despite the (perhaps unrealistic) assumption
that irrigation will be applied as needed. In the absence of
water, nutrient, and pest stresses, this would be caused by
temperature stresses. The increased irrigation water demands to
maintain a nonetheless reduced crop production might prove
uneconomical for farmers, especially if water pumping is more
costly, threatening the ability to meet the mandated biofuel
targets domestically without further subsidies.
In the Corn Belt (Iowa, Illinois, Indiana, Ohio, and Missouri)

and Great Lakes (Minnesota, and Wisconsin) states, corn
agriculture is primarily rain-fed.14 In this region, the require-
ments for irrigation would increase between 5 and 25%. In this
case, larger irrigation requirements are related to an unfavorable
temporal distribution of rain, with more intense but less
frequent rainfall and longer rainless periods, especially during
the summer months.17,35 Meeting increased irrigation needs
might require the construction of additional water distribution
systems or water catchment capacity, which might pose
engineering, legal, or economic challenges. The expense of

Figure 4. Simulated future (2050s) changes (%) with respect to
baseline in yield, ET, irrigation rates, EWI, and IWI. Red indicates a
detrimental effect: yield decreases (yield panel), ET or irrigation
increases (ET and I panels), and an increase in the amount of water
relative to the production of 1 L of ethanol (EWI and IWI panels).
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this additional infrastructure might prohibitively increase the
cost of meeting the RFS.
Model Limitations. As explained above, we evaluate plant

acclimation to CO2, temperature, and precipitation (environ-
mental parameters) in combination with unlimited resource
(irrigation, fertilizer, and pesticide) use and planting and
harvesting timing optimization.
It is possible that our simulations overestimate plant growth

because plant response to CO2 is parametrized in GEPIC after
enclosure studies, which tend to overestimate productivity
compared to free-air carbon enrichment (FACE) studies.18 It is
also possible that we overestimate ET using the Hargreaves
equation instead of the Penman−Monteith equation.31,32

However, distributed modeling is more sensitive to input data
uncertainty than to other types of model uncertainty. Another
caveat in this analysis is the use of current corn hybrids and
ethanol conversion efficiencies in both the baseline and future
scenarios. While we acknowledge that biotechnical advances
may someday enable higher biofuel yield per area (i.e., by
increased grain and/or whole plant yields in combination with
enabled cellulosic conversion), there is no conclusive data
available about the water requirements of these crops. Finally, it
is important to note that, even if irrigation expansion is
justifiable based on physical environmental criteria, the degree
to which it will actually happen ultimately depends upon non-
physical aspects, such as legal and economic, which are not
considered in this study.
Policy Implications. Biofuels have received considerable

attention in national and international energy policies as
alternative renewable fuels. However, the sustainability of
biofuels has also been challenged because of potential impacts
on water and other resources.4,8,9,52,53 Concerns have been
raised that first-generation biofuel production often uses grain
crops as a feedstock, which can negatively impact the
availability of the food supply in international markets. To
the extent that biofuel expansion in the U.S. would put more
pressure on water scarcity and arable lands, it may contribute to
food price hikes, as observed from 2006 to 2008.23,52,54

We find that changes in climate in certain areas in the U.S. in
the coming decades could lead to reductions in crop yields and
an increase in irrigation demand. These projections highlight
the need to re-evaluate the sustainability of transportation
biofuel policy that requires feedstock-specific levels. While we
acknowledge that the findings of this study are subject to
specific model and data uncertainties, simulations for some
areas of the U.S. are sufficiency robust to warrant further
investigation. In particular, we recommend additional quanti-
tative analysis on the future role of irrigation requirements for
corn production to enable integrated water management.
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