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Abstract In their natural environment, bacteria and other
microorganisms typically grow as surface-adherent biofilm
communities. Cell signal processes, including quorum signal-
ing, are now recognized as being intimately involved in the
development and function of biofilms. In contrast to their
planktonic (unattached) counterparts, bacteria within biofilms
are notoriously resistant to many traditional antimicrobial
agents and so represent a major challenge in industry and
medicine. Although biofilms impact many human activities,
they actually represent an ancient mode of bacterial growth as
shown in the fossil record. Consequently, many aquatic or-
ganisms have evolved strategies involving signal manipula-
tion to control or co-exist with biofilms. Here, we review the
chemical ecology of biofilms and propose mechanisms
whereby signal manipulation can be used to promote or con-
trol biofilms.

Biofilm Introduction

Surface-adherent microbial communities have been described
by a number of early microbiologists including van Leeuwen-
hoek [1] and Zobell [2]. During the 1970s and 1980s, several
investigators including Busscher [3], Caldwell [4], Costerton
[5], Fletcher [6], Høiby [7], Marshall [8], White [9], and their
colleagues conducted a number of pivotal studies on bacterial
adhesion to surfaces and the formation of adherent bacterial
communities. During this period, the term biofilm came into

prominent use [10]. While a detailed description of these
earlier accomplishments is beyond the scope of this review,
we shall address several key concepts that provided the
groundwork for our present understanding of biofilms and
their now recognized association with quorum sensing (QS).

Early studies of biofilms were driven largely by microsco-
py and related culture-based approaches. Unlike traditional
pure culture techniques, individual bacteria were not separated
from their natural substrata or from other organisms. Rather,
they were examined as closely as possible to their natural
situation. Light microscopy and electron microscopy, with
its higher resolution, were adapted to these studies. One
notable issue found during this time was that biofilms are
ubiquitous in most environments that were examined [11].
This included aquatic and marine environments [8, 12], soils
[13], digestive processes in higher animals [14], industry
(biofouling and trickling filter applications in wastewater
treatment) [15, 16], and infectious disease [17, 18]. Based
on their appearance with transmission electron microscopy,
biofilms appeared to have complex structures with
microcolonies of similar organisms interspersed with an or-
ganic matrix (formerly referred to as a glycocalyx) [19].
Detailed examination of bacterial colonies on agar plates
[20] showed complex microbial community development
and cellular organization, which provides an interesting cor-
relation of biofilms in natural settings to conventional lab
culturing techniques. Indeed, colony biofilms are now a com-
monly used approach during genetic studies of biofilms [21].

The advent of confocal microscopy revealed biofilms to
have an even more elaborate structure than was seen with
electron microscopy [22]. Although lacking the resolution of
electron microscopy, confocal microscopy allowed the obser-
vation of fully hydrated structures and biofilm architecture
(Fig. 1). Instead of a homogeneous distribution of cells as
suggested by electron microscopy, confocal microscopy
showed bacteria to be frequently clumped together into
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microcolonies that were surrounded by regions of low cell
density referred to as water channels [22].

General Biofilm Characteristics

The prominence of biofilms is easily explained in flowing
systems such as rivers [23]. Adhesion enables individual
organisms to persist in spite of shear forces. As well in
oligotrophic environments such as alpine streams, nutrients
adsorb onto surfaces and microorganisms would therefore be
attracted to those sources of nutrition [24]. Metabolic and
genetic interactions are facilitated when organisms grow in
close proximity within biofilms. Wolfaardt et al. [25] investi-
gated the ability of soil bacteria to grow on a commercial
herbicide, diclophop methyl (the methyl ester of 2-[4-(2,4-
dichlorophenoxy)phenoxy] methyl propanoic acid), and
found that some bacteria could survive on this compound as
a sole carbon source only if present as a biofilm consortium.
Pure cultures of the soil isolates were unable to grow on this
herbicide regardless of whether theywere grown as planktonic
or biofilm cultures. Similarly, mixed planktonic cultures were
unable to grow on diclophop methyl [25]. Syntrophic metab-
olism within microbial aggregates has also been reported in
interspecies hydrogen transfer during anaerobic digestion of
cellulose [26, 27]. Biofilm growth has also been shown to
promote genetic exchange through transformation [28] and
conjugation [29, 30] due to the close proximity of the donor
and recipient organisms.

During the 1980s, robust biofilms were widely described in
a number of industrial and medically important environments
wherein unattached (planktonic) bacteria would be exposed to
potentially lethal concentrations of antimicrobial chemicals
and, in the case of medical environments, the host immune

system [10]. In 1985, Nickel and co-workers [5] investigated
the relative susceptibility of biofilm and planktonic popula-
tions of Pseudomonas aeruginosa to tobramycin. Under their
experimental conditions, the minimal inhibitory concentration
of tobramycin against planktonic P. aeruginosa populations
was 1 μg/ml, whereas biofilm populations persisted at
1,000-fold greater concentrations (1 mg/ml). Other investi-
gators have found similar differences in susceptibility of
planktonic and biofilm populations to various antimicrobial
agents, with the specific values depending upon culture con-
ditions and the antimicrobial agent used [18, 31]. In aquatic
and terrestrial environments, biofilm growth has also been
shown to protect against predation from protozoa, snails and
other invertebrates [32, 33], and viruses [34]. Biofilm growth
also allows microbial persistence against other environmental
stresses such as pH and oxidative stress [35] and facilitates
genetic exchange [30] and enhanced mutation [36] to respond
to evolutionary pressures.

In the 1990s, a number of theories were developed by
Gilbert, Stewart, Costerton, and others to explain the resis-
tance of biofilms against various stresses [37, 38]. These
included penetration difficulties of antimicrobials through
biofilm matrices, slow growth of biofilm organisms due to
nutrient limitations, and differential gene expression and phys-
iology of bacteria due to surface adhesion or biofilm growth.
As a tribute to these predictions, subsequent studies have
shown that slow growth [39, 40] and biofilm specific gene
expression [41] are important mechanisms in antimicrobial
resistance. Other contributing factors to biofilm drug resis-
tance include the formation of slow growing subpopulations
of persister cells [42] and metabolic interactions within mixed
population biofilms [43]. Aside from the aforementioned is-
sues of slow growth and biofilm-specific gene expression, the
high population density within biofilms was predicted to be
very important [37, 44].

Cell Signaling and Its Application to Biofilm Development

As reviewed in [45], time course observations of biofilm
formation, coupled with genetic studies, showed that biofilm
formation is a coordinated, developmental process wherein
planktonic bacteria attach to a surface and then migrate to-
gether into clusters (microcolonies) using twitching motility
[46] in which an organism's type IV pili attach to a surface and
then retract in an analogous manner to a grappling hook,
thereby pulling the organism along the substratum [47]. Ma-
trix formation occurs during microcolony formation as well as
during the maturation process. The final stage in biofilm life is
a detachment process whereby some cells would detach from
the sessile community and reenter the planktonic phase [48].
The highly coordinated growth of bacterial populations during
biofilm development [45] is indicative of signal processes.

Fig. 1 Confocal microscopy image of a mixed culture biofilm consisting
of P. aeruginosa and E. coli . Individual cells aggregate into clusters
(microcolonies) that are surrounded by low cell density regions (water
channels). Bar represents 10 μm
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Since they were first observed [1], bacteria have been
considered to be single celled life forms. In this context, the
description of luciferase activity in Vibrio fischeri as a func-
tion of population density [49] was highly significant. Since a
critical threshold of bacterial population is necessary for this
group behavior [50], the term quorum sensing is now applied
[51]. There are a number of small metabolites that are associ-
ated with QS. The first class of quorum signals described were
N-acylated homoserine lactones (AHLs), which are common-
ly associated with signaling in a number of gram negative
bacteria [51]. Here, the AHL signal, originally called an
autoinducer, is synthesized by an AHL synthase (LuxI homo-
log) and, at concentrations above a threshold level, affects a
transcriptional activator (LuxR homolog) [51]. While the
threshold concentration for quorum signaling often exceeds
108 CFU/ml in planktonic cultures, Connell et al. [50] showed
that under diffusion restricted lab conditions, which likely
mimic biofilm conditions, as few as 102–103 cells could
trigger a quorum response. There are now a number of addi-
tional signals identified including AI-2 (autoinducer 2) [52],
quinolones [53], small peptides in gram positive organisms
[54], and a genus specific signal in Vibrio sp. [55]. New signal
molecules such as 2-(2-hydroxyphenyl)-thiazole-4-
carbaldehyde (IQS) are being described in the literature [56].
Although initially considered to control individual character-
istics such as light production in V. fischeri and elastase
production inP. aeruginosa , QS is now recognized as a global
regulatory mechanism in most bacteria [57]. A full description
of QS is beyond the scope of this mini-review. Readers are
referred to some excellent articles for further information
[55, 58, 59].

The first experimental evidence of quorum signals in nat-
urally occurring biofilms was demonstrated in freshwater
stream biofilms [60] (Fig. 2) using an Agrobacterium
tumefaciens AHL bioassay [61]. This same bioassay was used
to document AHL production in clinical biofilm infections of
urinary catheters [62]. AHL production was also confirmed in
P. aeruginosa pulmonary infections associated with cystic

fibrosis [63]. Using a biofilm flow cell and confocal micros-
copy, Davies et al. [64] showed that P. aeruginosa lasI (one of
two luxI homolog genes in P. aeruginosa) mutants lost the
characteristic microcolony and water channel structures seen
in wt organisms, but that this structure could be restored by
exogenous addition of 3-oxo-dodecanoyl-homoserine lactone
(3-oxo-C12 HSL, the AHL that is synthesized by LasI).
Although AHLs were later shown to be not necessary for
biofilm structure formation under some nutritional conditions
[65], these findings did suggest a notable role of cell signaling
and QS during biofilm development. At least two research
groups showed that QS was a major contributing factor to the
antibiotic and immune resistance of P. aeruginosa biofilms
[66, 67]. Extracellular polysaccharide production and water
channel formation, two key morphological features of
biofilms have also been linked to quorum regulation [68,
69]. Cell signaling has also been linked to biofilm dispersion,
wherein bacteria disperse from biofilms and return to a plank-
tonic lifestyle [45]. There have been a number of recent
reports linking small fatty acids [70], D-amino acids [71],
and polyamines [72] as signals for detachment. In this context,
the dispersion signal-induced return to a planktonic lifestyle
would reduce or potentially eliminate the biofilm-mediated
antibiotic resistance and allow many antibiotics to be used.
Signal manipulation offers an attractive strategy for control-
ling biofilms as many traditional antibiotics and disinfectants
are ineffective [10].

Cell Signaling and Biofilm Manipulation

Although biofilms are now recognized as a major factor in
medicine and industry [10], they are an ancient mode of
bacterial growth as recognized in the fossil record [73, 74].
As a result, many organisms have evolved strategies to control
or in many cases coexist with biofilms. A key finding was the
discovery of biofilm inhibition by quorum-inhibiting furanone
compounds produced by the Australian macroalga, Delissea
pulchra by Givskov, Steinberg, Kjelleberg, and their col-
leagues [75, 76]. AlthoughD. pulchra lives in marine regions
prone to biofouling, young thalli on this macroalga do not get
colonized by bacteria [75]. The brominated furanone com-
pounds produced by D. pulchra are not lethal to bacteria at
naturally occurring concentrations, but block AHL-mediated
gene activation by interfering with LuxR-DNA binding [77].
Early field tests showed that materials soaked in the natural
furanone from D. pulchra were quite resistant to biofouling
[76]. Quorum inhibitors including synthetic furanones [78]
and garlic extract [79] have also proven effective in clearing
biofilm-mediated P. aeruginosa pulmonary infections in ani-
mal models. In P. aeruginosa , several other key cellular
functions are regulated by QS, notably virulence [80] as well
as biofilm-mediated resistance to antibiotics and the innate

Fig. 2 Bioassay using A. tumefaciens A136 bioassay [61] showing AHL
production from biofilms associated with duckweed (Lemna minor). The
same bioassay was used to show AHL production in aquatic biofilms on
rocks [60]. Interestingly, bacterial association with L. minor was first
reported by van Leeuwenhoek [1]
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immune response [66]. QS regulation of virulence has also
been described in a wide variety of bacteria (reviewed in [55,
59]). Traditional biofilm control strategies including the use of
biocides, strong disinfectants, and conventional antibiotic
therapy readily target planktonic bacteria but have a relatively
poor track record in biofilm control [10]. In stark contrast,
biofilm control strategies involving quorum signal disruption
have considerable promise even in natural settings [78, 81]
and often mimic successful biofilm controlling strategies of
higher organisms.

Identification of QS Molecules and Quorum Sensing
Inhibitors

The discovery of furanones [75] has sparked considerable
interest in the biofilm community, particularly in the context
of identifying additional quorum disrupting compounds. Of
great utility to these investigations is the association of QS
with pigmentation in some organisms, including
Chromobacterium violaceum [82] and Serratia marcescens
[83]. Both organisms grow readily on standard lab media such
as Luria Bertani agar (LB agar). Pigmentation loss can be used
to identify quorum inhibition (Fig. 3) due to signal disrupting
chemicals, signal degrading (quorum quenching) enzymes
[84], or competition with other AHLs [85]. In C. violaceum ,
the cognate AHL is decanoyl homoserine lactone (C10-HSL)
[86] and the presence of other AHLs can also lead to a loss of
pigmentation through competitive inhibition of C10-HSL
binding to CviR (LuxR homolog) [85]. The C. violaceum
bioassay can be supplemented with another AHL bioassay,
such as A. tumefaciens A136 [85] in order to determine
whether pigmentation inhibition in C. violaceum arises from
competition with other AHLs or from an actual quorum
inhibitor. A. tumefaciens A136, which contains a plasmid with
a traR::lacZ fusion, recognizes a wide variety of AHLs

[87] and can be used as a second screen for competing
AHLs [85].

Rasmussen et al. [88] developed an intriguing alternative
strategy for identifying potential quorum sensing inhibitor
(QSIs), using a positive selection approach. In this study, they
engineered three different bacterial strains, referred to as QSI
selectors (QSIS), so that they contained plasmid-borne genes
conferring toxicity or susceptibility to kanamycin which were
regulated by AHLs. Two of the strains, QSIS-1 and QSIS-3,
were constructed in Escherichia coli , which is naturally un-
able to produce AHLs (lacks luxI homolog), whereas QSIS-2
was constructed in a P. aeruginosa lasI rhlI strain. QSIS-1
contained a toxic gene, phlA , originally from Serratia
liquefaciens under the control of luxR , which responds to a
variety of AHLs [89]. This organism was unable to grow in
the presence of AHLs unless a QSI such as a furanone was
present. In strain QSIS-3, kanamycin resistance mediated by
npt was placed under regulation of the phage lambda cI
repressor gene, which in turn was placed under LuxR regula-
tion. Strain QSIS-3would be unable to grow in the presence of
AHLs and kanamycin unless QSI molecules are present.
Strain QSIS-2, constructed inP. aeruginosa , contained a sacB
gene under the control of the lasB promoter. Unlike the LuxR
promoter, the las promoter responds exclusively to 3-oxo-
C12-HSL. QSIS-2 is therefore unable to grow in the presence
of 3-oxo-C12 HSL and sucrose unless QSI molecules are
present. In their study, the authors found the greatest success
using strains QSIS-1 and QSIS-2, although elevated sugar
concentrations (particularly glucose) that are present in some
fruit extracts, caused false-positive readings due to interfer-
ence with the sacB-mediated sucrase killing in QSIS-2 [88].
The QSIS strategy has been used in a number of investiga-
tions, and candidate QSI molecules have been identified from
a variety of plants including garlic extract and 4-nitro-
pyridine-N -oxide from the original study [88] and an isothio-
cyanate compound from horseradish [90].

While QS and QSI reporter strains have been useful in
qualitative assays including screens for quorum activity, quo-
rum inhibition, and localization studies in microscopy (e.g.,
[50]), they have also been successfully adapted to quantitative
assays. Shaw et al. [91] adapted an A. tumefaciens traR::lacZ
reporter strain to detect AHL molecules in thin layer chroma-
tography. In this case, the AHLs are separated using reverse
phase chromatography. The reporter strain is mixed with agar
containing X-gal (if a lacZ reporter is used) and then used to
cover the plate. From our experience, the mixing of the
organisms into the agar and the overlay must be completed
quickly as many reporter strains including A. tumefaciens are
heat sensitive. Following overnight incubation at an appropri-
ate temperature for the reporter strain, the AHL molecules
appear as colored spots on the plate (Fig. 4). Rasmussen et al.
[88] used a similar strategy to detect QSI molecules in thin
layer chromatography, in which QSIS strains containing lacZ

Fig. 3 Quorum signal inhibition is a very promising strategy for control-
ling biofilms [81]. As violacein pigmentation is quorum-regulated in C.
violaceum [82], a pigmentation inhibition assay [82, 85], using this
organism, can be used to screen other organisms or chemicals for poten-
tial quorum inhibiting activity. Using a C. violaceum overlay assay [85]
quorum inhibition is evident in one aquatic bacterial isolate (right) but
absent in another (left)
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reporter genes were incorporated into the agar overlay. Moré
et al. [92] used an A. tumefaciens reporter strain during QS
detection by HPLC. In this study, AHLs were separated by
reversed phase HPLC and then the output was collected in a
fraction collector and AHLs detected by incubating with a
suitable reporter strain. A number of quorum molecules, no-
tably many AHLs, are commercially available, and so detec-
tion limits and reporter strain responses can be correlated with
known AHL concentrations. In our experience, the TLC pro-
tocol using A. tumefaciens in LB agar with X-gal could detect
3-oxo-octanoyl homoserine lactone (3-o-C8 HSL, cognate
AHL of A. tumefaciens ) [87] to the low picomolar range
and some other AHLs to the micromolar or even nanomolar
range. Other investigators using the same reporter with de-
fined media have detected this 3-o-C8 HSL to sub-picomolar
concentration [91]. Conceivably, this strategy of using report-
er strains could be adapted to other non-AHL QS and QSI
systems.

While there are a wide variety of bioassays capable of
identifying quorum signals and quorum inhibition (reviewed
in [93]), the pigmentation-based assays such as the C.
violaceum assay [82] require no additional antibiotics or
specialized detection equipment (such as bioluminescenc or
fluorescence detectors for lux - and gfp -based reporters). As
such, they are particularly useful for investigating quorum
inhibition in regions of high biodiversity such as the tropics.

Bioassays have been used to identify a number of candidate
quorum inhibiting materials in natural environments. Exam-
ples include a variety of plants [94], food extracts [79, 95],
bacteria [96, 97], fungi [98], and some antibiotics [99]. Quo-
rum inhibition has also been shown to play a role in bacterial
competition [100]. Synthetic analogs of quorum signals have
also shown promise in quorum inhibition [101], and there is
considerable effort to refine rapid screening technology to
identify other inhibitors.

Potential Quorum Signaling Applications for Biofilm
Manipulation

Overall several strategies are used for quorum signal interrup-
tion (examples in parentheses refer to AHL-based quorum
signaling):

1. Block production of quorum signals (LuxI target)
[102, 103].

2. Enzymatic inactivation or degradation of quorum
signals. This approach is often called quorum quenching
[104, 105].

3. Use autoinducer analogues to block receptors (LuxR target)
[101, 103].

4. Disrupt or inactivate the autoinducer receptor (LuxR target)
[102].

5. Inhibit downstream effects of QS [77, 106, 107].

In some of these studies, the mechanism of inhibition has
been well described [79, 96, 97]. There have been promising
investigations of some quorum inhibitors against industrial
biofouling and biofilm infections under natural conditions
[78, 79]. Given the association of bacterial nutritional status
with QS and biofilm formation [65], it would be prudent to
evaluate quorum inhibiting compounds under a range of
chemical and physical conditions. As well in animal testing
and clinical testing, potential host toxicity and bacterial quo-
rum inhibitor resistance would also need to be addressed.

Aside from the prevention of biofilm formation through
quorum inhibitors, there are also considerable potential med-
ical and industrial applications to removing an established
biofilm by the use of dispersion signals [70]. The underlying
assumption is that organisms returning to a planktonic growth
state would lose biofilm-associated antibiotic and disinfectant
resistance [5]. Dispersion agents could be used in combination
with antibiotics or disinfectants. Aside from potential host
toxicity and bacterial resistance concerns mentioned previous-
ly, one potential issue would be the mechanism by which
biofilms would return to the planktonic stage. An ideal situa-
tion would involve the biofilm dispersing into individual
planktonic cells. However, if large aggregates of cells were
to become released from biofilms associated with a venous
catheter or other medical device, then potentially serious

Fig. 4 AHL reporter strains such as A. tumefaciens A136 [61] can be
used to detect AHLs at low concentrations during thin layer chromatog-
raphy [91]. Shown in this figure are C6-HSL (C6) at 5 μmol, 3-o-C8 HSL
(3-o-C8) at 5 pmol, a mixture of C6 and 3-o-C8 HSLs (mix), and an ethyl
acetate extract of 3-o-HSL from an overnight culture of A. tumefaciens
KYC6 [129]. The C6- and 3-o-C8-HSLswere obtained from a commercial
source (Sigma/Aldrich)
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complications, such as a stroke or embolism, would arise if
these aggregates blocked an important capillary.

Often in nature, a higher organism may promote the for-
mation of a desired microbial community. Examples of this
include protective bacterial populations associated with coral
[97] and bioluminescent V. fischeri associated with the Ha-
waiian bobtail squid, Euprymna scolopes [108]. In both these
situations, the surrounding seawater microbial environment is
complex, yet the number of bacterial species that ultimately
colonize the coral and squid is restricted. In the case of the E.
scolopes light organ, colonization is restricted to one organ-
ism V. fischeri [108]. There are a number of factors involved
in the specificity of the E. scolopes–V. fischeri association
including an organic matrix component of the light organ and
the innate immune system of the squid host, and cell surface
molecules on the bacterium [109]. Although quorum-
regulated proteins in V. fischeri are essential for light produc-
tion, some proteins regulated by quorum signaling are in-
volved in the maturation of the light organ [109]. While
factors in some microbial community development popula-
tions are known in higher organisms (reviewed in [110]), little
is known about microbial succession processes that occur on
nutrient-lacking abiotic surfaces. Recently, we conducted a
field study to investigate whether bacterial AHLs influenced
bacterial colonization onto dialysis tubing that was suspended
into a spring-fed lake [111]. In that study, culture supernatants
from AHL-producing and non-AHL-producing strains of A.
tumefaciens and C. violaceum , as well as several abiotic
controls, were placed in dialysis tubing, suspended into a lake
for 4–5 h, and colonized by ambient aquatic microorganisms.
As shown by denaturing gradient gel electrophoresis (DGGE)
(Fig. 5), the diversity of organisms that colonized tubing
containing spent culture media was considerably lower than
those colonizing the abiotic controls. Minor differences were
observed in the presence and absence of AHL-containing
supernatant. The major conclusion from this study was that a
preexisting microbial community on a surface can control
subsequent colonization and microbial succession [111].
Huang et al. [112] investigated microbial community devel-
opment in intertidal marine biofilms. These investigators

Fig. 5 DGGE profile of
microbial community colonizing
dialysis tubing suspended in a
spring-fed lake [111]. As
evidenced by the number of
bands, the diversity of organisms
colonizing dialysis tubing
containing lake water (a) or
media (b) is significantly higher
than tubing containing autoclaved
spent media (c), suggesting that
organisms have the potential to
control microbial succession
in a biofilm

Fig. 6 Photograph of a packed
bed reactor for treating
wastewater before (a) and after
(b) biofilm growth. Although
biofilms grow quickly on
some reactors (such as the
denitrification reactor shown),
in biofilm-based, nitrification
reactors, a functioning biofilm
may take as long as a month to
become established. QS-based
technology may provide a
mechanism to accelerate
this process
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found that primary colonizing bacteria may influence micro-
bial succession, possibly in part through AHL production. In
some instances, there are situations wherein biofilm formation
may be desired. In that context, quorum signal technology
may be very relevant. We now address one situation involving
the use of biofilms for wastewater treatment including its
potential applications to the space program.

Wastewater is typically treated by microbial degradation of
pollutants. In wastewater associated with agriculture or aqui-
culture, the water may contain elevated quantities of nitroge-
nous compounds such as protein or urea. Here, considerable
levels of ammonia will arise throughmicrobial deamination or
urease activity [113]. Elevated levels of dissolved ammonia
(NH4

+) and nitrate (NO3
−) can be toxic (reviewed in [114,

115]), but can be removed biologically. The first stage in
biological nitrogen removal is the oxidation of NH4

+ to
NO3

− by nitrifying bacteria [116], followed by a second
anaerobic denitrification step involving the reduction of
NO3

− to N2 [117]. There are a number of biofilm-based
bioreactors that employ nitrification [116–119]. However,
the lag time involved in establishing a fully functional nitrify-
ing biofilm can be significant (approximately 3–4 weeks in
one pilot scale investigation (LM Vega and K Pickering,
unpublished observations). While an inconvenience for con-
ventional wastewater processing on Earth, an extended lag
time, or recovery of nitrifying organisms from stress [120] in
any life support system providing potable water in space
flight, would represent a major concern [121] and potential
risk to astronaut health.

As shown in Fig. 6, one potential use of QS technology
would be to accelerate biofilm formation. Based on two studies
involving freshwater and marine biofilm formation, there is
evidence that QS can influence microbial succession in biofilm
development [111, 112]. Gonzales et al. [122] showed that
long chain AHLs could promote surface colonization by
Acidithiobacillus ferrooxidans on pyrite. As well, AHLs have
been shown to promote recovery of ammonia oxidizing bac-
teria from starvation stress [123] and also promote the anoxic
ammonia oxidizing activity in a mixed microbial community
[124]. Several key issues would need to be addressed during
the development of new QS technology. Based on prior work,
one would certainly anticipate an interaction of QS and nutri-
ents present [65]. Pertinent issues that would need to be ad-
dressedwould include the identification of the relevant quorum
signals, testing their effectiveness under ambient wastewater
chemical conditions, optimizing their use, and finally evaluat-
ing whether any toxicity issues [81] may arise.

Concluding Thoughts and Future Perspectives

Biofilms, containing high concentrations of surface-adherent
bacteria, have been widely described in a number of

environments. While a successful mode of bacterial growth,
they have proven to be remarkably resistant to control by the
conventional use of disinfectants and antibiotics [10, 17]. A
number of lab investigations have shown bacterial signaling,
including QS, to be prominently associated with the develop-
ment and eventual dispersion of biofilms [48, 64, 125, 126].
Ecological studies have shown that many higher organisms
are capable of controlling biofilms by interfering with QS [75,
97]. Many QS-disrupting compounds including brominated
furanones have been identified and are actively being
exploited for their ability to prevent biofilms [127]. Biofilm
dispersion signals [70–72] represent another very promising
line of investigation. While biofilm growth is associated with
antibiotic resistance, these sessile bacteria regain antibiotic
susceptibility upon return to the planktonic growth [5]. Com-
bination therapy involving dispersion signals and traditional
antimicrobial agents may be promising in combating biofilm-
associated infections and industrial biofouling. Finally, QS
may provide a strategy whereby biofilm growth or desired
microbial community composition and succession within
biofilms may be promoted.

There is increasing evidence that higher organisms manip-
ulate QS to control microbial populations including biofilms
[97, 127, 128]. Although biofilms were once seen as an
intractable microbial problem [10], we are now finding mech-
anisms whereby they can be controlled via manipulation of
the cell signal ecology.
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