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Abstract: Nitrification is known as one of the most sensitive processes affected when activated sludge is exposed to antimicrobial silver
nanoparticles (AgNPs). The impact of AgNPs and their released silver ions (Agþ) on the abundance, activity, and diversity of different
nitrifying bacteria in wastewater treatment plants (WWTPs), however, is poorly understood. The present study investigated the impacts of
2 sizes of AgNPs (5 nm and 35 nm) and Agþ ions on the nitrifier community in activated sludge, including both ammonia-oxidizing
bacteria (AOB) and nitrite-oxidizing bacteria (NOB). Ammonia-oxidizing bacteria were more sensitive to AgNPs than the NOB; a 5-d and
7-d exposure of activated sludge to 35 nm AgNPs (40 ppm) significantly reduced AOB abundance to 24% and 19%, respectively. This
finding was confirmed further by a decrease in activated sludge ammonia oxidation activity measured by 14C-labeled bicarbonate uptake.
In contrast, neither AgNPs (up to 40 ppm) nor Agþ (1 ppm) affected the abundance of NOB. Both 5 nm and 35 nm AgNPs decreased the
diversity of AOB, as indicated by denaturing gradient gel electrophoresis with ammonia monooxygenase gene (amoA) primers, although
some unknown Nitrosomonas species were relatively resistant to AgNPs. The generally greater resistance of NOB than AOB to AgNPs
suggests that the accumulation of bacteriostatic nitrite inWWTPs is unlikely to be exacerbated due to the accidental or incidental release of
AgNPs. Environ Toxicol Chem 2014;33:2234–2239. # 2014 SETAC

Keywords: Silver nanoparticles Nitrification Ammonia oxidizing bacteria Nitrite oxidizing bacteria Denaturing gradient
gel electrophoresis

INTRODUCTION

The number of nanotechnology enabled products has
expanded rapidly during the past decade, with more than 1600
commercial products containing manufactured nanomaterials
available in the market [1]. Because of their broad-spectrum
antimicrobial properties, silver nanoparticles (AgNPs) are the
most widely used manufactured nanomaterials in consumer
products (25% of all the nanotechnology enhanced products) [1]
and are commonly used in domestic, textile, medical, industrial,
and environmental applications [2–4]. The rapid increase in
commercial applications of AgNPs is of public concern because
the unintended impacts from environmental exposure to AgNPs
and associated ecological risks are not fully understood.

The widespread use of AgNPs has resulted in some releases
that reach sewage systems and wastewater treatment plants
(WWTPs) [5,6]. The impact of various forms of silver to
activated sludge in WWTPs has been documented [7,8]; for
example, concentrations of AgNPs ranging from 1 ppm to
20 ppm have been reported to upset the operation of activated
sludge plants (e.g., inhibit biological nitrogen removal) [9–11].
Nitrification, which is the bio-oxidation of ammonia (NH3) to
nitrate (NO3

�) via nitrite (NO2
�), has been suggested to be the

most vulnerable step in the nitrogen cycling process [12]. A
previous study by Yang et al. [13] also demonstrated the adverse
effect of AgNPs on the microbial community of activated
sludge, with nitrifying bacteria identified as one of the most
sensitive species.

In WWTPs, 2 different groups of bacteria mediate nitrifica-
tion: ammonia-oxidizing bacteria (AOB) for oxidation of NH3 to
NO2

� and nitrite-oxidizing bacteria (NOB) for oxidation of
NO2

� to NO3
� [14] as follows:

AOB :NHþ
4 þ 1:5O2 ! NO�

2 þ H2Oþ 2Hþ ð1Þ

NOB :NO�
2 þ 0:5O2 ! NO�

3 ð2Þ

Overall nitrification :NHþ
4 þ 2O2

! NO�
3 þ H2Oþ 2Hþ ð3Þ

Nitrosomonas spp., Nitrosospira spp., and Nitrosococcus spp.
are abundant in AOB communities of activated sludge [15–17];
Nitrospira-like bacteria, rather than Nitrobacter spp., are the
dominant nitrite oxidizers in WWTPs and natural ecosys-
tems [14,18]. The high sensitivity of AOB (e.g., Nitrosomonas
europaea) to AgNPs has been reported [8,12]. The literature has
not addressed, however, the relative sensitivity of AOB versus
NOB to various forms of silver. Differentially inhibiting the
activity of these bacteria may have environmental relevance
such as changes in accumulation of toxic NO2

�, an intermediary
compound of nitrification and denitrification, and release of
N2O, a greenhouse gas. Nitrite accumulation is an important
water quality concern; high nitrite levels are harmful to aquatic
life and to humans (methemoglobinemia) [19–21] and can be
inhibitory to bacteria at concentrations exceeding 200mg/L [22].

Molecular techniques, such as polymerase chain reaction
(PCR) and denaturing gradient gel electrophoresis (DGGE) have
been employed widely to quantify nitrifying bacteria popula-
tions and fingerprint nitrifier communities, respectively [23,24].
In the present study, we used these techniques to assess the
impacts of silver on both AOB and NOB in the activated sludge
community by comparing the effects of 2 different sizes of
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AgNPs (5 nm and 35 nm) and Agþ ions after different exposure
times. We quantified the abundance of AOB and NOB in the
activated sludge by qPCR, performed DGGE to investigate
changes in the AOB community structure, and quantified the
effect on ammonia oxidation activity using a 14C-labeled
bicarbonate assay.

MATERIALS AND METHODS

Microcosms set-up

Activated sludge samples with a mixed liquor suspended
solids at concentrations ranging from 1000mg/L to 2000mg/L
were collected from the 69th Street WWTP in Houston, Texas.
The ALS Laboratory Group characterized their chemical and
physical properties (e.g., dissolved organic matter, pH, NO3

�,
NH4

þ, Cl�, SO4
2�, and PO4

3�concentrations) (Supplemental
Data, Table S1). In the microcosm tests, these activated sludge
samples (100mL) were exposed to 5-nmAgNPs (0.05 ppm), 35-
nm AgNPs (40 ppm), or Agþ (1 ppm, added as AgNO3) at 26 8C
for 7 d. The controls without the addition of silver were treated
similarly. These different silver concentrations were selected
based on Yang et al. [13] to meet 2 criteria: 1) that the values be
representative of concentrations measured at WWTPs [7,8], and
2) that different AgNPs be compared at equivalent concen-
trations, based on exerting equivalent effects; in this case, 24% to
28% reduction in activated sludge oxygen consumption, which
was assessed by respirometry (Supplemental Data, Table S2).
The exposed samples and controls were prepared in triplicate.

Quantifying AOB and NOB by qPCR

A 1 milliliter aliquot of an activated sludge sample was
collected from each control and silver-treated microcosm at day
2, day 5 and day 7 of exposure. The activated sludge was
centrifuged for 10min at 5000 g, and DNA was extracted using
the PowerSoil DNA isolation kit (Mobio). Quantitative PCR
(qPCR) was performed using a 7500 real-time PCR system
from Applied Biosystems in a 15-mL reaction mixture
containing 10 ng DNA, SYBR Green Master Mix (7.5mL),
0.3mM of each primer, and water. The following primer
sets were used: 1) for AOB, degenerate primer,
amoA-1F (50-GGGGTTTCTACTGGTGGT-30) and amoA-2R
(50-CCCCTCKGSAAAGCCTTCTTC-30), targeting the genes
encoding the ammonia monooxygenase subunit A (amoA) [23];
2) for Nitrobacteria spp., FGPS872 (50-CTAAAA CTCAAAG-
GAATTGA-30) and FGPS1269 (50-TTTTTTGAGATTTGC-
TAG-30), targeting their 16S rRNA genes [25]; and 3) for
Nitrospira spp., NSR1113F (50-CCTGCTTTCAGTTGC-
TACCG-30) and NSR1264R (50-GTTTGCAGCGCTTTG-
TACCG-30) [14]. Genomic DNA of N. europaea (ATCC
19718), extracted with the same DNA isolation kit for the
activated sludge, was used as the standard for quantifying the
abundance of AOB. Genomic DNA of Nitrobacter vulgaris
(DSM 10236) was purchased directly from DSMZ, and pUC57
plasmid containing Nitrospira 16S DNA was synthesized by
GenScript USA. The PCR reaction included an initial 10min
95 8C denaturation, followed by 40 cycles of 1min at 95 8C;
1min at the respective annealing temperatures (54 8C for primer
set amoA-1F and amoA-2R, 50 8C for FGPS872 and FGPS1269,
and 65 8C for NSR1113F and NSR1264R); and 1min
at 60 8C.

PCR-DGGE

For our DGGE experiment, the gene amoA was selected as
the molecular marker to investigate the dynamics and diversity

of AOB in the activated sludge during silver exposure. The
degenerate primers amoA-1F and amoA-2R were used to
amplify amoA genes in the control and the silver-treated samples
collected at day 2 day 5, and day 7 of exposure. The amplicons
of amoA genes were then mixed with an equal volume of
2� loading buffer and loaded onto an 8% polyacrylamide gel
with a denaturing gradient from 45% to 65% (where 100%
denaturant corresponds to 7M urea and 40% formamide) [23].
Gradient Maker (GM-100; CBS Scientific) helped ensure a
reproducible, uniform denaturing gradient for gel casting.
Electrophoresis was performed at 60 8C for 16 h at a constant
voltage of 100V using DCode Universal Mutation Detection
System (BioRad). After electrophoresis, the acrylamide gel was
stained with 1� SYBR Gold DNA gel stain (Invitrogen) for
0.5 h before ultraviolet imaging visualization. The optical
density profiles of all gel lanes were created by 1D-Gels Tool
Palette in AlphaView SA Ver 3.4.0 (ProteinSimple). Each band
was excised and soaked in 200mL DNase-free water for 2 h at
room temperature [26]. The water was then removed by
pipetting. A total of 30mL DNase-free water was added to each
sample, which were stored at 4 8C overnight. Polymerase chain
reaction was repeated on each sample using 1mL of the soaking
water as the DNA template and amoA-1F and amoA-2R as paired
primers. Polymerase chain reaction products were purified and
concentrated with the QIAquick PCR Purification Kit (Qiagen)
and then sequenced by Lone Star Labs. After combining the
sequence reading from either side, the trimmed sequences
(�490 bp in length) were blasted in the National Center for
Biotechnology Information database to identify the species-
specific amoA gene extracted from a band.

14C-labeling assay of nitrification activity

To assess nitrification activity, ammonium 14C-bicarbonate
(2mCi) was added to a 10mL activated sludge sample [27,28],
removed from control or silver-treated microcosms at day 0, day
1, day 3, day 5, and day 7 of exposure. Each sample was divided
equally into 2 parts: 1 part containing 5 ppm of N-serve in an
alcoholic solution and the other part containing the same volume
of pure ethanol. After 2 h incubation at 26 8C in the dark, each
sample was filtered through a nitrocellulose membrane (pore
size 0.22mm) from Millipore, and the filters were washed with
1M hydrochloric acid (HCl) and then dried. The total
radioactivity of the activated sludge was determined by
combustion in a biological oxidizer (OX-600, R.J. Harvey
Instrument), followed by measuring the trapped 14CO2 in 10mL
of 14C cocktail solution by liquid scintillation counting (LS
6500, Beckman) [29].

Quantifying Agþ release from AgNPs

After 7 d of exposure to 5-nm AgNPs, 35-nm AgNPs, or
Agþ, 1mL of activated sludge sample was ultra-centrifuged
(149 000 g for 3.5 h) [30,31]. The supernatant was then diluted to
fit in the appropriate measuring range with 1% HNO3. The
dissolved Agþ concentrations were determined by inductively
coupled plasma-mass spectrometry using an Elan 9000
instrument (Perkin-Elmer). For the total silver concentrations,
1mL of the activated sludge sample was digested with 67% to
70% trace-metal grade nitric acid at 70 8C overnight and was
then filtered through a 0.2 um sterile syringe filter to remove the
impurities [32]. The collected solution was diluted with H2O and
then analyzed by inductively coupled plasma-mass spectrome-
try. The control was treated in the sameway, with the control and
each treatment prepared in triplicate.
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Statistical analysis

The data are presented as mean� standard error of the mean.
The statistical analysis was applied to compare the significant
difference between the treatments and the control. The student’s
t-test was performed when necessary, and the significance level
in all calculations was set as p< 0.05.

RESULTS AND DISCUSSION

Exposure to AgNPs decreased AOB abundance

The higher sensitivity to AgNPs of AOB compared with
NOB indicates that ammonia oxidation is a more vulnerable step
during the nitrification process (Figure 1). For AOB, exposure to
35-nm AgNPs (40 ppm) caused a decrease in their abundance,
whereas exposure to Agþ ions (1 ppm) or 5-nm AgNPs
(0.05 ppm) did not have any such effect (Figure 1a), possibly
due to the lower concentrations of Agþ and 5-nm AgNPs.
Compared with the control, the 5-d and 7-d exposure to 35-nm
AgNPs significantly reduced the abundance of AOB to 24% and
19%, respectively.

We did not detect Agþ in any of these microcosms
(Supplemental Data, Table S3). Although Agþ is the critical
determinant for the antibacterial activity of AgNPs [33], AgNPs
may more strongly inhibit nitrifying bacteria than Agþ [9,34].
This is apparently due to the interaction between Agþ ions and
inorganic ligands (e.g., Cl� and S2�) or organic matter, which
reduces the bioavailability of Agþ to a greater extent than that of
AgNPs, as well as mitigates toxicity [35]. This would explain the
absence of free Agþ ions and the lack of significant effects in
Agþ-amended microcosms [13].

Nitrite-oxidizing bacteria were relatively resistant to AgNPs
and Agþ during the 7-d exposure. In our activated sludge
samples, Nitrospira, rather than Nitrobacter, were the dominant
NOB species; this is consistent with other studies [15].
Furthermore, NOB were 1000 times less abundant than AOB
(Figure 1b and 1c). Nitrite levels in the control and the silver-
treated samples remained constant during the 7-d exposure
(Supplemental Data, Figure S1). Owing to the greater tolerance
of NOB than AOB to AgNPs, we focused our subsequent
analyses (DGGE and 14C-labeling assay) on the more vulnerable
AOB in the activated sludge. The lower sensitivity of NOB to
AgNPs suggests that the accumulation of toxic nitrite inWWTPs
is unlikely (i.e., production would be hindered to a greater extent
than consumption) after incidental or accidental silver release.

Another nitrification byproduct of potential concern is N2O, a
greenhouse gas [36]. However, N2O was not detected in any of
the microcosms (Supplemental Data, Table S4), probably due to
the relatively low abundance of AOB in this activated sludge
microbial community [13]. Nevertheless, AgNPs (14 ppm) have
been reported to enhance N2O flux from soil (by 4.5-fold) [37],
which underscores the need for further research on how AgNPs
entering biological wastewater treatment systems affect such
emissions.

Decrease of AOB diversity by AgNPs

The DGGE results confirmed that exposure of activated
sludge to 35-nm AgNPs led to a decrease in both the abundance
and diversity of AOB communities. As Figure 2 illustrates, 2
(bands 4 and 6) of the 6 bands faded after the 5-d exposure,
indicating bacteria harboring these amoA-like genes (i.e., band 1
and 2) disappeared below detection levels following exposure to
35-nm AgNPs. Moreover, only band 5 prevailed over the
7-d incubation, implying decreased diversity of the AOB

community. This also suggests that AOB species containing this
amoA-like gene (i.e., band 5) are relatively tolerant to the toxic
effects generated by 35-nm AgNPs.

Similarly, exposing the activated sludge to 5-nm AgNPs also
caused a decrease in the diversity of the AOB community, even
though it did not decrease AOB abundance (Figure 1). Before
day 5, 5-nm AgNPs had no significant effect on the AOB
community. By day 7, however, we observed that band 1
vanished and band 2 diminished (Supplemental Data, Table S5).

Figure 1. Abundance of ammonia-oxidizing bacteria (AOB; a) and nitrite-
oxidizing bacteria (NOB; b and c) in activated sludge (AS) samples during
the 7-d exposure to Agþ (1 ppm), 5-nm AgNPs (0.05 ppm), and 35-nm
AgNPs (40 ppm). [Color figure can be viewed in the online issue which is
available at wileyonlinelibrary.com]
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A shift in the AOB community structure in activated sludge
exposed to other heavy metals (e.g., Ni) has also been
reported [38]. Long-term continuous loading of AgNPs at a
sublethal level (0.1 ppm), however, was reported to have a
negligible effect on the nitrifier community structure and their
abundance [15]. For the Agþ treatment, the diversity of the AOB
community was similar to that detected in the control at each
exposure time, consistent with our previous findings identified
by pyrosequencing analysis [13].

The nucleic acid sequences recovered from the bands are
highly similar to the amoA genes from Nitrosomonas (Figure 3),
demonstrating they are the dominant AOB species in the present
study’s AS samples. The prevalence of Nitrosomonas in
ammonia oxidizing bacterial communities has been observed
widely in different WWTPs, and Nitrosomonas spp. seem more

likely to flourish in aerobic units inWWTPs [39–41]. The biased
preference of primer amoA-1F and amoA-2R for Nitrosomonas
spp. was excluded, because they have been used successfully to
detect other AOB members (e.g., Nitrosospira and Nitro-
solobus) in a variety of prior studies [23,42,43]. Band 3 was
annotated as ammonia monooxygenase in Nitrosomonas sp.
Nm47 (96% sequence identity) and band 6 showed high
similarity (95%) to ammonia monooxygenase in Nitrosomonas
oligotropha. All the other bands were affiliated within Nitro-
somonas, as an unknown AOB, and band 5 could be assigned to
some silver-tolerant Nitrosomonas based on their prevalence in
all the samples. The higher tolerance of these AOB reflects the
broad diversity of bacterial responses to environmental stresses
and precludes generalizations about the potential impacts of
AgNPs on a given phenotype (e.g., nitrifiers).

Acute inhibitory effect of AgNPs on ammonia oxidation

A significant inhibitory effect on ammonia oxidation was
observed mainly in the 35-nm AgNP exposed microcosms, as
measured by the oxidation of assimilatory ammonium 14C-
bicarbonate into 14CO2. This inhibition confirms that our data
show a decrease in the abundance of the AOB community
following 35-nm AgNP treatment as quantified by qPCR. The
adverse effect started after the first day of exposure and increased

Figure 2. Denaturing gradient gel electrophoresis (DGGE) gel photograph showing the structure shift of ammonia-oxidizing bacteria (AOB) during silver
exposure. The bands in each lane, marked by numbers, represent amoA amplified products, and their positions are indicated by white circles. The peak height of
each band is given in Supplemental Data, Table S5.
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Figure 3. amoA-based phylogenetic tree showing Nitrosomonas spp. as a
dominant bacterial species in the activated sludge (AS). The amoA sequences
of the known ammonia-oxidizing bacteria (AOB) were obtained from the
National Center for Biotechnology Information database, and the tree was
constructed using Molecular Evolutionary Genetics Analysis (MEGA), Ver
5.2.
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Figure 4. Effect of silver treatment on ammonia oxidation activity of
activated sludge (AS). Asterisks (�) indicate significant induction compared
to unexposed controls (p< 0.05). [Color figure can be viewed in the online
issue which is available at wileyonlinelibrary.com]
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as the exposure continued (Figure 4). A 5-d exposure to 5-nm
AgNPs also significantly inhibited nitrification activity of AS,
but this negative impact was alleviated by day 7. Other groups
have reported inhibition of nitrification when the AS was
exposed to other heavy metals (e.g., Ni, Cu, and Zn) [38,44].

IMPLICATIONS AND CONCLUSIONS

Silver nanoparticles could disrupt ammonia oxidation in
WWTPs, which serve as common sinks for AgNPs released
from commercial manufactured nanomaterials, and upset
nitrogen removal and treatment efficiency. In agricultural soils
amended with associated biosolids, silver could hinder benefi-
cial microbial-plant interactions by decreasing both the
abundance and the diversity of AOB communities. The
generally higher resistance of NOB to AgNPs, however, could
reduce the potential accumulation of toxic nitrite. Note that the
environmental impacts of AgNPs appear to be concentration-
dependent, with both sequestration of AgNPs by organic matter
or inorganic ligands and development of microbial heavy metal
resistance mitigating their potential effect. Overall, the potential
impacts of AgNPs on the nitrification process in water and soil
ecosystems underscore the importance of minimizing and
intercepting incidental and accidental releases of AgNPs into
the environment.

SUPPLEMENTAL DATA

Tables S1–S5.
Figure S1. (43 KB DOC).
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