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• Zn incorporated into CuO lattice and 
optimized electronic structure of Cu 
sites. 

• PDS oxidation performance was 
improved by enhancing PDS* genera-
tion and reactivity. 

• Zn substitution enhanced PDS* genera-
tion by promoting PDS adsorption.  
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A B S T R A C T   

Peroxydisulfate (PDS)-based Fenton-like reactions are promising advanced oxidation processes (AOPs) to 
degrade recalcitrant organic water pollutants. Current research predominantly focuses on augmenting the gen-
eration of reactive species (e.g., surface-activated PDS complexes (PDS*) to improve treatment efficiency, but 
overlooks the potential benefits of enhancing the reactivity of these species. Here, we enhanced PDS* generation 
and reactivity by incorporating Zn into CuO catalyst lattice, which resulted in 99% degradation of 4-chlorophe-
nol within only 10 min. Zn increased PDS* generation by nearly doubling PDS adsorption while maintaining 
similar PDS to PDS* conversion efficiency, and induced higher PDS* reactivity than the common catalyst CuO, as 
indicated by a 4.1-fold larger slope between adsorbed PDS and open circuit potential of a catalytic electrode. Cu- 
O-Zn formation upshifts the d-band center of Cu sites and lowers the energy barrier for PDS adsorption and 
sulfate desorption, resulting in enhanced PDS* generation and reactivity. Overall, this study informs strategies to 
enhance PDS* reactivity and design highly active catalysts for efficient AOPs.  
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1. Introduction 

The discharge of persistent and toxic organic contaminants into 
aquatic ecosystems poses a significant challenge to environmental 
health and clean water supply [1,6,34]. Heterogenous persulfate-based 
Fenton-like reactions utilizing peroxymonosulfate (PMS, HSO5

− ) and 
peroxodisulfate (PDS, S2O8

2− ) are promising water treatment technolo-
gies to remove recalcitrant organic contaminants, due to their high ef-
ficiency and affordability [11,27,41]. Compared to PDS salts (e.g., 
K2S2O8), commercial PMS (i.e., Oxone) is more costly ($ 0.74/kg vs. $ 
2.2/kg) and contains KHSO4 and K2SO4 impurities, which decreases the 
pH and reduces the effective oxidant mass content [25,46,48]. More-
over, PMS possesses more susceptible asymmetric O-O bonds, thus being 
more inclined to be activated via interferential hybrid pathways and 
lower oxidant utilization efficiency [31]. Despite these advantages, 
current cutting-edge research on persulfate-based AOPs predominantly 
focuses on PMS-based systems, because of steric hindrance caused by the 
presence of two SO3 moieties on both sides of an O–O bond, making PDS 
less reactive than PMS [16]. Thus, it is important to overcome these 
limitations and develop efficient PDS-based oxidation systems that 
enhance the feasibility of persulfate-based AOPs in wastewater 
treatment. 

Typically, PDS activation is initiated by its adsorption onto active sites 
to generate radical (e.g., SO4

•− and •OH) [8,63] or nonradical reactive 
species (e.g.,1O2, high-valent metals, and surface-activated PDS com-
plexes (PDS*) [24,40,49] that oxidize the target pollutants. Thus, the 
overall efficiency of these AOPs depends on two factors: (1) the genera-
tion of reactive species, which hinges on the adsorption of persulfate and 
the conversion of the adsorbed persulfate into reactive species, and (2) the 
reactivity of these species, which is related on their oxidation capacity and 
the electron transfer rate with pollutants. Among the generated reactive 
species, PDS* are commonly formed over the surface of catalysts such as 
carbon materials [15,38] and metal oxides [44,57]. These complexes 
exhibit high selectivity toward electron-rich pollutants [12,53], stability 
in water matrices [10,47], and propensity to avoid the formation of toxic 
halogenated byproducts [7,54]. They also exhibit surface-confined 
metastable states, hinting at the potential for tunable generation and 
reactivity through manipulation of the catalyst structure and composition 
[16,31]. For example, heteroatom substitution engineering, which mod-
ifies the electronic structure of active sites, can optimize both the 
adsorption and activation of persulfate [39,49,50,55,9]. The incorpora-
tion of adjacent Cu atoms into a carbon-supported single Cu atom catalyst 
was reported to facilitate PDS adsorption, leading to the formation of PDS 
complexes (PDS*) through a dual-site mode [43]. N doping was shown to 
facilitate the generation of peroxymonosulfate complexes (N-CNT-PMS*), 
thus further boosting phenol degradation [32] Similarly, the introduction 
of cobalt (Co) into carbon nanotubes (Co-N-CNT) resulted in a high spin 
state of Co-N moieties, thus enhancing the PMS complexes generation 
[26]. While these efforts are promising to enhance the generation of such 
reactive complexes, strategies to enhance their reactivity remain largely 
unexplored, which represents an overlooked opportunity to inform the 
design of highly active catalysts for Fenton-like-based wastewater 
treatment. 

Copper oxide (CuO), known for its low cost, facile synthesis and 
structural tunability, is a common catalyst for PDS activation via the 
PDS* pathway [23,29,57]. In this work, a Zn-doped CuO catalyst 
(Zn-CuO) was developed by substituting Cu with Zn heteroatoms, to 
explore the simultaneous regulation of PDS* generation and reactivity. 
Zn impurities were chosen because: (1) incorporation of non-metal sites 
such as B [28,61], N [50], and S [3,65] atoms into metal oxide substrates 
encounters susceptibility to replacement by O atoms, which requires 
intricate synthesis procedures and often results in unsatisfactory sta-
bility [2]; and (2) in contrast to conventional metal heteroatoms such as 
Mn [21], Co [62,63], and Au [51] substitution that create new active 
sites, earth-abundant Zn2+ with a fully occupied electronic configura-
tion (3d10) is inert and can replace Cu2+ without creating oxygen 

vacancies [22,35,5,56]. Remarkably, Zn substitution resulted in signif-
icantly improved PDS activation for 4-chlorophenol (4-CP) degradation 
via surface-activated Zn-CuO/PDS complexes (Zn-CuO/PDS*). The 
mechanism of Zn substitution for the enhancement of both PDS* gen-
eration and PDS* reactivity was discerned through both experimental 
and theoretical investigations. 

2. Material and methods 

2.1. Chemicals and materials 

Details of chemicals and materials are listed in Text S1. 

2.2. Catalyst preparation and characterization 

Zinc-substituted copper oxide was synthesized using a modified 
precipitation method [45]. Briefly, a mixture containing Cu(NO3)2 and 
Zn(NO3)2 was alkalized by the gradual addition of NaOH (4 M). After 
aging at 90 ℃ for 2 h, catalysts with different Zn contents were prepared 
(labeled as Zn-CuO-x, where x% represented the theoretical mass ratio 
of Zn to CuO). If not specified, Zn-CuO-5 is simplified as Zn-CuO. 

The crystalline phase of the catalyst was analyzed using X-ray 
diffraction (XRD, D8 Advance Da Vinci, Bruker) with Cu Kα radiation (λ 
= 0.154 nm). Rietveld refinement was conducted by the General 
Structure Analysis System (GSAS) software. X-ray photoelectron spec-
troscopy (XPS) analysis was gained by an AXIS Ultra DLD system (Shi-
madzu). The X-ray absorption spectroscopy (XAS) measurements were 
conducted at the BL14W beamline of the Shanghai Synchrotron Radia-
tion Facility. Transmission electron microscopy (TEM, Talos F200X, FEI) 
images were recorded to observe the morphologies of Zn-CuO. The 
Brunauer-Emmett-Teller (BET) specific surface area was measured using 
a gas sorption analyzer (Autosorb-IQ3, Quantachrome). In situ Raman 
spectra at 532 nm were acquired by a Bruker Senterra R200-L dispersive 
Raman microscope. The occurrence of reactive oxygen species (ROS) 
was examined by a Bruker micro EPR spectrometer. 

2.3. Catalytic activity evaluation 

Batch degradation experiments were carried out by dispersing Zn- 
CuO (0.2 g/L) into 50 mL of 4-CP solution (10 mg/L) with stirring to 
achieve adsorption equilibrium. Then the reaction was initiated by 
adding PDS (0.2 mM) with an initial pH of 7.0. The sample (0.5 mL) was 
withdrawn and filtered at each predetermined time interval. 

2.4. Analytical methods 

The concentrations of 4-CP and its degradation byproducts were 
quantified by high-performance liquid chromatography (HPLC) on a 
Shimadzu LC-2010AHT instrument. The residual PDS concentration was 
measured through a KI spectrophotometry method [20,58]. To deter-
mine the oxidation potential of the generated surface complexes (PDS*), 
open-circuit potential measurement was performed in a three-electrode 
cell connected to an electrochemical workstation (CHI 760) by using 
catalyst-modified carbon paper as the working electrode with the 
addition of certain doses of PDS. The counter electrode and reference 
electrode are Pt wire and a saturated calomel electrode, respectively. 
Details of analytical methods are listed in Text S2. 

Each test, performed in triplicate, is presented as mean values with 
error bars depicting ± one standard deviation. Statistical analysis 
involved a single-tailed Student’s paired t-test with a significance < 5%. 

2.5. Theoretical calculations 

All spin-polarized periodic calculations were carried out using the 
Vienna ab initio Simulation Package (VASP). Details of theoretical cal-
culations are provided in Text S3. 
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3. Results and discussion 

3.1. Zn-doped CuO catalyst exhibits heteroatom substitution of Cu by Zn 

The synthesis procedure of Zn-substituted CuO (Zn-CuO) is illus-
trated in Fig. S1. The Zn content in Zn-CuO was 2.5 ± 0.007 wt%, based 
on inductively coupled plasma-atomic emission spectrometry (ICP-AES) 
(Table S1). The TEM image (Fig. 1a) reveals a stacked nanosheet 
structure of Zn-CuO, similar to pure CuO (Fig. S2). Zn modification did 
not significantly affect the BET specific surface area (Fig. S3). High- 
resolution transmission electron microscopy (HRTEM) and selected 
area electron diffraction (SAED) patterns show a lattice fringe spacing of 
0.25 nm, corresponding to the CuO (− 111) facet (inset in Fig. 1a). The 
elemental mapping image (Fig. 1b) corroborates that Zn was uniformly 
distributed over Zn-CuO. 

No impurity phase of Zn was observed in the monoclinic phase of 
CuO (JCPDS No. 45–0937) even with a relatively high mass ratio (10%) 
of Zn precursors (Fig. S4). Rietveld-refined XRD patterns show that Zn- 
CuO maintains the same crystal structures as CuO, with a space group of 
C1c1 (Fig. 1c and Table S2). It suggests that Zn atoms successfully 
incorporate into the CuO lattice through Cu substitution, facilitated by 
the similar ion radius of Cu2+ (RCu2+ = 0.57 Å) and Zn2+ (RZn2+ =

0.60 Å) [37]. Such substitution leads to increased unit cell volume and 
changed constants (a, b, and c) of Zn-CuO compared to pristine CuO, 
suggesting the lattice distortion (Table S2). Noticeable redshifts in 
Raman peaks were also observed with the increase in Zn content 
(Fig. S5). This suggests elongation of the Cu-O bond due to Zn substi-
tution, which aligns with the expansion of Zn-CuO unit cells [50,52]. 

The surface chemical composition of catalysts was investigated using 
XPS. The XPS fitting curves of Cu 2p and Zn 2p demonstrate that both Cu 
and Zn exhibit an oxidation state of +2 in all tested samples (Fig. S6) 
[42]. Cu LMM spectra, which are particularly sensitive to the oxidation 
states of Cu, reveal that the ratio of the lower valent Cu (Cu+2-δ) is 

subsequently increased with the higher degree of Zn substitution 
(Fig. 1d), accompanied by an increasing Zn2+ ratio in Zn LMM peaks 
(Fig. S7) [13]. The lower Cu oxidation states observed after Zn substi-
tution suggest an increase in electron density on the Cu atoms, which 
can be attributed to the higher electronegativity of Cu than that of Zn 
(χCu = 1.90, χZn = 1.65) [30,37]. 

The chemical state and coordination environment of Cu sites were 
analyzed by X-ray absorption fine structure spectroscopy (XAFS) mea-
surements. The normalized X-ray absorption near-edge structure 
(XANES) spectra (Fig. 1e) demonstrate the absorption intensity for Zn- 
CuO is close to that of CuO, indicating a Cu oxidation state of approxi-
mately +2. However, Zn substitution resulted in a shift of the Cu K ab-
sorption edge toward lower energy, suggesting a decreased oxidation 
state of Cu sites, which is consistent with the XPS analysis. The presence 
of lower-valence Cu atoms in Zn-CuO is beneficial for electron transfer 
from Cu atoms to adsorbed PDS molecules [42]. Extended X-ray ab-
sorption fine structure spectra (EXAFS) in Fig. 1f reveal a dominant peak 
at 1.50 Å in both Zn-CuO and CuO, corresponding to the first shell Cu–O 
coordination [50]. The fitted coordination number (4.0) of Cu atoms 
remained unchanged after Zn substitution, indicating no generation of 
oxygen vacancies (Fig. S8 and Table S3) [36]. The absence of oxygen 
vacancies was further supported by the unobservable signals in the 
electron paramagnetic resonance (EPR) measurements (Fig. S9). The 
Cu–O–Cu peak, initially at 2.49 Å in CuO, shifts to 2.53 Å after Zn atom 
introduction, providing evidence for the presence of Cu–O–Zn second 
shell coordination [14]. 

3.2. Zn substitution enhanced catalytic performance in Fenton-like 
reactions 

The Fenton-like reaction activity of Zn-CuO-x catalysts was assessed 
by oxidative 4-CP degradation through PDS activation. A “volcano-like” 
relationship between Zn contents and the first-order rate constants (kobs) 

Fig. 1. (a) TEM image of Zn-CuO (insets are SAED and HRTEM images); (b) Elemental mapping images of Zn-CuO; (c) Rietveld-refined XRD patterns of CuO and Zn- 
CuO; (d) Cu LMM XPS spectra of prepared catalysts; (e) Normalized Cu K-edge XANES spectra of Zn-CuO and reference samples (Cu foil, Cu2O, and CuO), and (f) 
Fourier transform k3-weighted EXAFS spectra of CuO and Zn-CuO. 
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of 4-CP degradation was observed (Fig. 2a), with a peak of 0.31 min− 1 

corresponding to 5 wt% Zn. Control tests (Fig. 2b) show that 12% of 4- 
CP was adsorbed and only 2% was directly oxidized by PDS within 
15 min. Cu2+ or ZnO addition in the presence of PDS resulted in minimal 
4-CP degradation. CuO exhibited limited PDS activation performance, 
leading to 78% 4-CP removal within 15 min (kobs = 0.09 min− 1). In 
contrast, Zn-CuO addition with only 0.2 mM PDS achieved 99% degra-
dation of 4-CP within 10 min, indicating the superior performance of Zn- 
CuO for efficient PDS utilization and activation. This resulted in an 
exceptionally high normalized rate constant (kn) of 0.60 min− 1 g− 1 L, 
surpassing the values observed for other metal-based catalysts with 
similar surface areas and carbon-based catalysts known for their rela-
tively high surface areas (Fig. 2c and Table S4) [18]. 

Zn-CuO demonstrated remarkable stability, as evidenced by main-
taining almost 100% 4-CP degradation within 10 min over five cycles 
(Fig. 2d). No noticeable change in crystalline structure (Fig. S10) was 
observed after repeated reactions. Zn-CuO also exhibited high catalytic 
performance in complex environments, including stability across a wide 
pH range of 4 - 11 and resistance to various co-occurring constituents 
(Fig. 2e-f), suggesting it is promising for practical wastewater treatment. 
The intermediates formed during 4-CP degradation were further deter-
mined by ultra-performance liquid chromatography-mass spectrometry 
(UPLC-MS). Products resulting from C–C coupling and C–O polymeri-
zation were observed, with the polymerization degree even reaching 4 
(Fig. S11). Such polymerized products could be easily separated by 
filtration and removed from water as part of the treatment process. 

3.3. Surface-activated PDS complexes-dominated Fenton-like reaction 

Quenching and EPR tests were performed to identify the primary 
reactive species responsible for 4-CP degradation. The presence of 
methanol (MeOH) and sodium fluoride (NaF) had a negligible impact on 
4-CP degradation, indicating a minimal contribution from both free and 
surface-bound hydroxyl and sulfate radicals (Fig. 3a) [19]. The absence 

of detectable DMPO-•OH and DMPO-SO4
•− signals in EPR tests further 

supported the nonradical activation pathway (Fig. S12a). Similarly, the 
involvement of 1O2 in 4-CP removal was ruled out due to the limited 
inhibition of FFA on 4-CP degradation and the absence of TEMP-1O2 
signals (Fig. S12b). The presence of 4-CP accelerated PDS decomposition 
from 21% to 40% within 15 min (Fig. 3b). This trend differs from the 
behavior observed in the Cu(III)-dominated CuO/PMS system, where Cu 
(III) preferentially reacts with 4-CP, leading to a slower consumption of 
the oxidant after 4-CP addition [45]. 

In situ Raman tests were conducted to identify the formation of 
PDS*. No significant peak was observed at 608 cm− 1 throughout the 
reaction (Fig. 3c), suggesting the absence of Cu(III) during 4-CP degra-
dation [4]. The characteristic peak of S2O8

2– was detected at approxi-
mately 835 cm–1. Following the introduction of Zn-CuO, a new peak 
emerged at around 816 cm–1, corresponding to the bending vibrations of 
the prolonged O–O bond in the Zn-CuO/PDS* intermediate [33,59]. 
This peak gradually diminished upon the addition of 4-CP, highlighting 
the crucial role of the generated surface-activated Zn-CuO/PDS* in the 
degradation of 4-CP. The presence of surface-activated PDS* was also 
evident through the analysis of open-circuit potentials (Fig. 3d). Upon 
the addition of PDS, the open-circuit potential immediately increased 
and eventually reached an equilibrium state, indicating the generation 
of oxidative PDS*. Subsequently, as 4-CP was introduced, the potential 
decreased, which can be attributed to PDS* consumption during 4-CP 
degradation. A high ion concentration ([NaClO4]: [PDS] = 50:1) did 
not significantly inhibit 4-CP degradation, suggesting inner-sphere 
complexation between Zn-CuO and PDS (Fig. S13) [9]. Therefore, the 
4-CP degradation in Zn-CuO/PDS can be ascribed to the 
surface-activated PDS* pathway (Fig. S14). A similar pathway was also 
evidenced in the CuO/PDS system (Fig. S15), suggesting the improved 
PDS activation performance after Zn substitution is not attributed to the 
alteration of the PDS activation pathway. 

Fig. 2. (a) 4-CP degradation and first-order rate constants for Zn-CuO-x activated PDS; (b) 4-CP degradation under different conditions; (c) A comparison of 4-CP 
removal performance (by normalized rate constant kn) in different PDS systems; (d) Sustained 4-CP degradation activity by the Zn-CuO/PDS system in repeated batch 
reactions; (e) Influence of initial pH and (f) coexisting anions on 4-CP degradation in the Zn-CuO/PDS system. Conditions: [4-CP]0 = 10 mg/L, [catalyst] = 0.2 g/L, 
[Cu2+] = 0.16 g/L, [PDS] = 0.2 mM, initial pH = 7.0. 
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Fig. 3. (a) Lack of inhibition of 4-CP degradation by various quenchers added to the Zn-CuO/PDS system; (b) PDS decomposition with or without the presence of 4- 
CP in the Zn-CuO/PDS system; (c) In situ Raman spectra of the Zn-CuO/PDS system; (d) Open-circuit potential curves of the Zn-CuO/PDS system. Conditions: [4-CP]0 
= 10 mg/L (a, b and c) or 40 mg/L (d), [catalyst] = 0.2 g/L, [PDS] = 0.2 mM (a, b, and c) or 0.4 mM (d), [MeOH] = 200 mM, [FFA] = [NaF] = 2 mM, initial 
pH = 7.0. 

Fig. 4. (a) 4-CP degradation, (b) PDS adsorption, and (c) open-circuit potential for the Zn-CuO/PDS system with different initial PDS dosages; (d) Theoretical SO4
2– 

concentration for complete PDS decomposition and measured SO4
2– concentration, and corresponding PDS* conversion efficiency; Correlations between (e) kobs and 

PDS adsorption quantity, (f) PDS adsorption quantity and potential of PDS*. Conditions: [4-CP]0 = 10 mg/L, [catalyst] = 0.2 g/L, initial pH = 7.0. 
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3.4. Enhancement of PDS* generation and reactivity by Zn substitution 

Notably, a similar “volcano-like” relationship was also observed 
between Zn contents and equilibrium PDS adsorption quantities 
(approximated by PDS adsorption quantity at 60 min) (Fig. S16a). The 
increased PDS adsorption can be partially attributed to changes in zeta 
potential resulting from Zn doping (Fig. S16b). Moreover, PDS adsorp-
tion by different catalysts demonstrates a linear relationship with kobs, 
suggesting PDS adsorption is essential for PDS activation and subsequent 
4-CP degradation (Fig. S16c). 

To understand how enhanced PDS adsorption improves PDS activa-
tion, investigations into kobs, the adsorption quantity of PDS, and the 
open circuit potential of surface-activated PDS* were carried out in 
CuO/PDS, Zn-CuO-2/PDS, and Zn-CuO/PDS systems. The 4-CP degra-
dation rate constants increased from 0.26 to 0.34 min− 1 as the initial 
PDS concentration rose from 0.1 to 0.4 mM (Fig. 4a). PDS adsorption 
conformed well to Langmuir isotherm (Figs. 4b and S17). Since the 
experimental PDS dosages were much lower than the fitted maximum 
PDS adsorption capacity (Qmax) for Zn-CuO, the equilibrium PDS 
adsorption mass (Qe) increased with the initial PDS concentration. As a 
result, the potential of Zn-CuO/PDS* also increased with the PDS dosage 
(Fig. 4c). Similar trends were observed for CuO/PDS (Fig. S18) and Zn- 
CuO-2/PDS systems (Fig. S19). Note that the evaluation of PDS* gen-
eration cannot rely solely on PDS adsorption quantification since the 
conversion efficiency of adsorbed PDS into PDS* may vary. Thus, 
PDS* conversion efficiency, which represents the ratio of adsorbed PDS 
that is converted into reactive PDS*, was evaluated in different systems. 
The calculation of PDS* conversion efficiency involved determining the 
difference between the theoretically expected SO4

2– concentration 
resulting from complete PDS decomposition and the actual SO4

2– con-
centration (Text S4). Fig. 4d shows that CuO/PDS (27 ± 5.7%), Zn-CuO- 
2/PDS (27 ± 2.3%), and Zn-CuO/PDS (25 ± 4.3%) systems exhibited 
similar PDS* conversion efficiencies. Therefore, we postulate that Zn 
substitution enhances PDS adsorption but maintains similar PDS* con-
version efficiencies, thereby facilitating PDS* generation. The improved 
PDS* generation is further supported by the impact of catalyst dosage. 
As shown in Figs. S20a-c, 4-CP degradation was enhanced with a higher 
catalyst dosage. To strike a balance between catalyst cost considerations 
and catalytic performance, the catalyst dosages for experiments were set 
at 0.2 g/L. The slope (r, min L g− 1) between kobs and catalyst dosage 
exhibited an upward trend with increasing Zn contents, which can be 
ascribed to the improved efficiency of PDS adsorption and PDS* gen-
eration (Fig. S20d). 

The quantity of PDS adsorption at different initial PDS concentra-
tions shows a positive linear relationship with kobs (R2 > 0.90, p < 0.05, 
Fig. 4e). This slope (k1, min− 1 mM− 1) represents the increased oxidation 
rates per adsorbed PDS molecule, reflecting the apparent utilization 
efficiency of adsorbed PDS. Owing to the observed invariable 
PDS* conversion efficiency, k1 also indicates the apparent utilization 
efficiency of PDS*, which may inherently depend on PDS* reactivity 
[26,32]. The k1 value significantly increased from 3.3 ± 0.4 min− 1 

mM− 1 for the CuO/PDS system to 8.3 ± 0.8 min− 1 mM− 1 for the 
Zn-CuO/PDS system, suggesting an enhanced apparent utilization effi-
ciency of PDS* after Zn substitution. However, comparable slopes (s, 
min− 1 V− 1) were observed between the open circuit potential of the 
catalyst with the adsorbed PDS molecules (PDS*) and kobs in different 
systems (Fig. S21), suggesting that the electron transfer rates of catalysts 
were comparable [26]. 

The slope (k2, V mM− 1) between the PDS adsorption quantity and the 
potential of PDS* was further assessed. Essentially, k2 quantifies the 
increased PDS* potential upon adsorbing a specific amount of PDS. 
Thus, k2 can be regarded as “PDS* reactivity”, reflecting the intrinsic 
oxidation capacity of PDS* over catalysts. A well-fitted positive linear 
was observed in Fig. 4f (R2 > 0.91, p < 0.05), with the slope following 
the order of Zn-CuO (7.2 ± 0.4 V mM− 1) > Zn-CuO-2 (3.1 
± 0.6 V mM− 1) > CuO (1.4 ± 0.2 V mM− 1), which was aligned with 4- 

CP degradation efficiency. The highest k2 value observed in the Zn- 
CuO/PDS system indicates that, upon adsorbing a specific amount of 
PDS, Zn-CuO/PDS* attains the highest potential. Consequently, the 
increased apparent utilization efficiency of PDS* (k1) resulting from Zn 
doping is essentially attributed to the augmented formation of com-
plexes possessing superior reactivity (k2). 

Density functional theory (DFT) calculations were also conducted to 
understand the Zn-substitution-enhanced PDS* generation and reac-
tivity. The adsorption energy of PDS on Zn-CuO (Eads = − 3.78 eV) is 
more negative than that on CuO (Eads = − 3.43 eV, Fig. 5a and Fig. S22), 
which is consistent with the experimental results that Zn substitution 
facilitates PDS adsorption (Fig. S16a). PDS adsorbed on Zn-CuO surface 
exhibits a longer O− O bond length (1.51 Å) than that on CuO surface, 
suggesting a stronger reactivity of the adsorbed PDS, as indicated by the 
higher k2 value of the Zn-CuO/PDS system. The charge-density differ-
ence diagrams (Fig. S23) prove the occurrence of electron transfer from 
the catalysts to PDS, and the transferred Bader charge increases from 
1.41 e to 1.46 e, indicating enhanced ability for directional electron 
transfer from Cu to PDS. Thus, all the above analyses support that Zn 
substitution contributed to the efficient production of PDS* with strong 
PDS* reactivity. 

Upon PDS adsorption, only the d-band center of the spin-down 
electrons displays a noticeable shift (from − 2.25 eV to − 2.33 eV, 
Fig. S24), indicating that PDS adsorption is primarily governed by spin- 
down electrons [17]. Consequently, the d-band center of the spin-down 
electrons between CuO and Zn-CuO was compared through projected 
density of states (PDOS) calculations. Fig. 5c demonstrates that the 
d-band center of Zn-CuO (− 2.25 eV) is closer to the Fermi level in 
comparison to that of CuO (− 2.27 eV). This suggests that Zn substitution 
regulates the electron distribution of the Cu 3d orbital, and the less 
negative d-band center facilitates PDS adsorption, resulting in more 
negative adsorption energy, which is consistent with the above theo-
retical calculation results [49,64]. 

The Gibbs free energy of the reaction (Fig. 5d) indicates that both 
PDS adsorption (step (I) to (II)) and dissociation (step (II) to (III)) are 
exothermic processes. PDS adsorption onto Zn-CuO is more thermody-
namically favorable than that of CuO. The dissociation energy of PDS on 
Zn-CuO (Edis = − 0.53 eV) is much smaller than that of CuO (Edis =

− 0.85 eV), indicating that the O− O bond is more susceptible to 
breaking on the Zn-CuO surface [60]. The desorption of the second 
SO4* to generate SO4

2− (step (IV) to (V)) experiences the highest energy 
barrier, rendering it the rate-determining step for both Zn-CuO and CuO. 
The energy barrier decreases from 3.52 eV to 3.38 eV after Zn substi-
tution. Therefore, Zn substitution simultaneously facilitates PDS 
adsorption and reduces the energy barrier for SO4

2− desorption, 
contributing to enhanced PDS* generation and reactivity for 4-CP 
degradation. 

4. Conclusions 

In this work, we developed an approach to enhance reactive species 
(PDS*) generation and reactivity for efficient wastewater treatment. The 
substitution of earth-abundant Zn atoms into CuO lattice avoids the 
introduction of extra active sites, thus allowing us to discern the 
mechanisms for improved catalytic activity exhibited by Zn-CuO. The 
similar PDS* conversion efficiency reveals that PDS adsorption pre-
dominantly governs PDS* generation. Introducing the metric of 
“PDS* reactivity”, represented as the slope between PDS* potential and 
PDS adsorption quantity, broadens the perspective on promoting PDS 
activation from merely increasing PDS adsorption to enhancing both 
PDS* generation and reactivity. Note that PDS* reactivity can be 
enhanced by modifying the d-band center of substrates through het-
eroatom substitution. The Cu-O-Zn coordination upshifts the d-band 
center of Cu sites, thus facilitating PDS adsorption and enhancing 
PDS* reactivity, and accordingly significantly improving the activity of 
Zn-CuO in Fenton-like reactions. Although certain limitations, such as 
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means of improving PDS* conversion efficiency and the impact of 
various heteroatom substitutions necessitate further investigation, this 
work significantly advances mechanistic understanding of the intrinsic 
reactivity of reactive species in PDS-based AOPs, and introduces new 
possibilities for enhancing Fenton-like reactions by improving the 
reactivity of reactive species. 

Environmental implication 

Despite being relatively inexpensive, PDS is often underutilized in 
persulfate-based AOPs due to steric hindrance from its two SO3 moieties, 
making it less reactive than PMS. This study addresses this limitation by 
simultaneously enhancing PDS* generation and reactivity, by incorpo-
rating earth-abundant Zn atoms into the CuO lattice. This modification 
upshifts the d-band center of Cu sites and optimizes the energy barrier 
for PDS activation. Consequently, the enhanced PDS* generation and 
reactivity result in superior 4-chlorophenol removal efficiency. This 
work opens an avenue for designing highly active catalysts by enhancing 
reactive species reactivity for efficient AOPs in water purification. 
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